Patents by Inventor Ashwin Raghunathan

Ashwin Raghunathan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11867660
    Abstract: Device and methods for controlling pH or ionic gradient comprising a multisite array of feedback electrode sets comprising electrodes and pH sensing elements. The electrodes can include a reference electrode, counter electrode, and a working electrode. The device and methods iteratively select an amount of current and/or voltage to be applied to each working electrode, apply the selected amount of current and/or voltage to each working electrode to change pH of a solution close to the working electrode, and measure the signal output of the sensing element. The multisite array can include feedback and non-feedback electrode sets.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: January 9, 2024
    Assignee: ROBERT BOSCH GMBH
    Inventors: Christopher Johnson, Sam Kavusi, Nadezda Fomina, Habib Ahmad, Autumn Maruniak, Christoph Lang, Ashwin Raghunathan, Young Shik Shin, Armin Darvish, Efthymios Papageorgiou
  • Patent number: 11561198
    Abstract: Device and methods for use in a biosensor comprising a multisite array of test sites, the device and methods being useful for modulating the binding interactions between a (biomolecular) probe or detection agent and an analyte of interest by modulating the pH or ionic gradient near the electrodes in such biosensor. An electrochemically active agent that is suitable for use in biological buffers for changing the pH of the biological buffers. Method for changing the pH of biological buffers using the electrochemically active agents. The methods of modulating the binding interactions provided in a biosensor, analytic methods for more accurately controlling and measuring the pH or ionic gradient near the electrodes in such biosensor, and analytic methods for more accurately measuring an analyte of interest in a biological sample.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: January 24, 2023
    Assignee: ROBERT BOSCH GMBH
    Inventors: Christopher Johnson, Sam Kavusi, Nadezda Fomina, Habib Ahmad, Autumn Maruniak, Christoph Lang, Ashwin Raghunathan
  • Publication number: 20220288587
    Abstract: A heater for a microfluidic test card is disclosed herein. In a general example embodiment, a test card for analyzing a fluid sample includes at least one substrate layer including a microchannel extending through at least a portion of one of the substrate layers, and a printed substrate layer that is bonded to or printed on one substrate layer of the at least one substrate layer. The printed substrate layer includes a heater printed on the printed substrate layer so as to align with at least a portion of the microchannel. The heater includes two electrodes aligned on opposite sides of the microchannel, and a plurality of heater bars electrically connecting the two electrodes. The plurality of heater bars includes a central heater bar disposed between outer heater bars.
    Type: Application
    Filed: May 31, 2022
    Publication date: September 15, 2022
    Inventors: Ashwin Raghunathan, Steve Lee, Ryan Alan Revilla, Tej Rushikesh Patel
  • Patent number: 11344886
    Abstract: A heater for a microfluidic test card is disclosed herein. In a general example embodiment, a test card for analyzing a fluid sample includes at least one substrate layer including a microchannel extending through at least a portion of one of the substrate layers, and a printed substrate layer that is bonded to or printed on one substrate layer of the at least one substrate layer. The printed substrate layer includes a heater printed on the printed substrate layer so as to align with at least a portion of the microchannel. The heater includes two electrodes aligned on opposite sides of the microchannel, and a plurality of heater bars electrically connecting the two electrodes. The plurality of heater bars includes a central heater bar disposed between outer heater bars.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: May 31, 2022
    Assignee: FluxErgy, LLC
    Inventors: Ashwin Raghunathan, Steve Lee, Ryan Alan Revilla, Tej Rushikesh Patel
  • Patent number: 11322217
    Abstract: A track and hold circuit includes a signal input terminal, a clock input terminal, an output terminal, a transistor, and a bootstrapping circuit with a transformer. The transistor includes a source, a drain, and a gate, where the source is coupled to the signal input terminal, and the drain is coupled to the output terminal. The transformer includes a primary winding coupled to the clock input terminal, and a secondary winding. The secondary winding is coupled between the source and the gate to control a gate-source voltage of the transistor.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: May 3, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ashwin Raghunathan, Marco Corsi, Baher Haroun, Seyed Miaad Seyed Aliroteh, Swaminathan Sankaran, Robert Floyd Payne
  • Patent number: 10942146
    Abstract: Device and methods for use in a biosensor comprising a multisite array of test sites, the device and methods being useful for modulating the binding interactions between a (biomolecular) probe or detection agent and an analyte of interest by modulating the pH or ionic gradient near the electrodes in such biosensor. An electrochemically active agent that is suitable for use in biological buffers for changing the pH of the biological buffers. Method for changing the pH of biological buffers using the electrochemically active agents. The methods of modulating the binding interactions provided in a biosensor, analytic methods for more accurately controlling and measuring the pH or ionic gradient near the electrodes in such biosensor, and analytic methods for more accurately measuring an analyte of interest in a biological sample.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: March 9, 2021
    Assignee: ROBERT BOSCH GMBH
    Inventors: Christopher Johnson, Sam Kavusi, Nadezda Fomina, Habib Ahmad, Autumn Maruniak, Christoph Lang, Ashwin Raghunathan
  • Publication number: 20210065830
    Abstract: A track and hold circuit includes a signal input terminal, a clock input terminal, an output terminal, a transistor, and a bootstrapping circuit with a transformer. The transistor includes a source, a drain, and a gate, where the source is coupled to the signal input terminal, and the drain is coupled to the output terminal. The transformer includes a primary winding coupled to the clock input terminal, and a secondary winding. The secondary winding is coupled between the source and the gate to control a gate-source voltage of the transistor.
    Type: Application
    Filed: August 26, 2020
    Publication date: March 4, 2021
    Applicant: Texas Instruments Incorporated
    Inventors: Ashwin Raghunathan, Marco Corsi, Baher Haroun, Seyed Miaad Seyed Aliroteh, Swaminathan Sankaran, Robert Floyd Payne
  • Publication number: 20200363371
    Abstract: Device and methods for controlling pH or ionic gradient comprising a multisite array of feedback electrode sets comprising electrodes and pH sensing elements. The electrodes can include a reference electrode, counter electrode, and a working electrode. The device and methods iteratively select an amount of current and/or voltage to be applied to each working electrode, apply the selected amount of current and/or voltage to each working electrode to change pH of a solution close to the working electrode, and measure the signal output of the sensing element. The multisite array can include feedback and non-feedback electrode sets.
    Type: Application
    Filed: July 17, 2020
    Publication date: November 19, 2020
    Inventors: Christopher Johnson, Sam Kavusi, Nadezda Fomina, Habib Ahmad, Autumn Maruniak, Christoph Lang, Ashwin Raghunathan, Young Shik Shin, Armin Darvish, Efthymios Papageorgiou
  • Publication number: 20200238283
    Abstract: A heater for a microfluidic test card is disclosed herein. In a general example embodiment, a test card for analyzing a fluid sample includes at least one substrate layer including a microchannel extending through at least a portion of one of the substrate layers, and a printed substrate layer that is bonded to or printed on one substrate layer of the at least one substrate layer. The printed substrate layer includes a heater printed on the printed substrate layer so as to align with at least a portion of the microchannel. The heater includes two electrodes aligned on opposite sides of the microchannel, and a plurality of heater bars electrically connecting the two electrodes. The plurality of heater bars includes a central heater bar disposed between outer heater bars.
    Type: Application
    Filed: January 24, 2020
    Publication date: July 30, 2020
    Inventors: Ashwin Raghunathan, Steve Lee, Ryan Alan Revilla, Tej Rushikesh Patel
  • Patent number: 10514352
    Abstract: A system and method for monitoring outlier behavior in an array of n electrodes includes an electrical line, a switching circuit via which the electrodes are individually coupleable to the electrical line, a sensor; and processing circuitry, where, in each of m iterations: (i) a respective subset of electrodes is coupled by the switching circuit to the electrical line, (ii) the sensor senses an electrical parameter produced over the electrical line by the coupled subset of electrodes, and (iii) the processing circuitry obtains from the sensor a respective value of the electrical parameter, m being less than n, and the processing circuitry identifying those of the electrodes that exhibit outlier electrical behavior by finding electrical values to individually ascribe to individual ones of the electrodes of the array, which ascribed values can result in all of the respective values of all of the m iterations.
    Type: Grant
    Filed: January 4, 2016
    Date of Patent: December 24, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Ashwin Raghunathan, Sam Kavusi
  • Patent number: 10379080
    Abstract: Device and methods for use in a biosensor comprising a multisite array of test sites, the device and methods being useful for modulating the binding interactions between a (biomolecular) probe or detection agent and an analyte of interest by modulating the pH or ionic gradient near the electrodes in such biosensor. An electrochemically active agent that is suitable for use in biological buffers for changing the pH of the biological buffers. Method for changing the pH of biological buffers using the electrochemically active agents. The methods of modulating the binding interactions provided in a biosensor, analytic methods for more accurately controlling and measuring the pH or ionic gradient near the electrodes in such biosensor, and analytic methods for more accurately measuring an analyte of interest in a biological sample.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: August 13, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Christopher Johnson, Sam Kavusi, Nadezda Fomina, Habib Ahmad, Autumn Maruniak, Christoph Lang, Ashwin Raghunathan
  • Publication number: 20190137444
    Abstract: Device and methods for use in a biosensor comprising a multisite array of test sites, the device and methods being useful for modulating the binding interactions between a (biomolecular) probe or detection agent and an analyte of interest by modulating the pH or ionic gradient near the electrodes in such biosensor. An electrochemically active agent that is suitable for use in biological buffers for changing the pH of the biological buffers. Method for changing the pH of biological buffers using the electrochemically active agents. The methods of modulating the binding interactions provided in a biosensor, analytic methods for more accurately controlling and measuring the pH or ionic gradient near the electrodes in such biosensor, and analytic methods for more accurately measuring an analyte of interest in a biological sample.
    Type: Application
    Filed: December 20, 2018
    Publication date: May 9, 2019
    Inventors: Christopher Johnson, Sam Kavusi, Nadezda Fomina, Habib Ahmad, Autumn Maruniak, Christoph Lang, Ashwin Raghunathan
  • Patent number: 10041905
    Abstract: Device and methods for use in a biosensor comprising a multisite array of test sites, the device and methods being useful for modulating the binding interactions between a (biomolecular) probe or detection agent and an analyte of interest by modulating the pH or ionic gradient near the electrodes in such biosensor. An electrochemically active agent that is suitable for use in biological buffers for changing the pH of the biological buffers. Method for changing the pH of biological buffers using the electrochemically active agents. The methods of modulating the binding interactions provided in a biosensor, analytic methods for more accurately controlling and measuring the pH or ionic gradient near the electrodes in such biosensor, and analytic methods for more accurately measuring an analyte of interest in a biological sample.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: August 7, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventors: Christopher Johnson, Sam Kavusi, Nadezda Fomina, Habib Ahmad, Autumn Maruniak, Christoph Lang, Ashwin Raghunathan
  • Patent number: 10011549
    Abstract: Device and methods for use in a biosensor comprising a multisite array of test sites, the device and methods being useful for modulating the binding interactions between a (biomolecular) probe or detection agent and an analyte of interest by modulating the pH or ionic gradient near the electrodes in such biosensor. An electrochemically active agent that is suitable for use in biological buffers for changing the pH of the biological buffers. Method for changing the pH of biological buffers using the electrochemically active agents. The methods of modulating the binding interactions provided in a biosensor, analytic methods for more accurately controlling and measuring the pH or ionic gradient near the electrodes in such biosensor, and analytic methods for more accurately measuring an analyte of interest in a biological sample.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: July 3, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventors: Christopher Johnson, Sam Kavusi, Nadezda Fomina, Habib Ahmad, Autumn Maruniak, Christoph Lang, Ashwin Raghunathan
  • Publication number: 20170226037
    Abstract: Device and methods for use in a biosensor comprising a multisite array of test sites, the device and methods being useful for modulating the binding interactions between a (biomolecular) probe or detection agent and an analyte of interest by modulating the pH or ionic gradient near the electrodes in such biosensor. An electrochemically active agent that is suitable for use in biological buffers for changing the pH of the biological buffers. Method for changing the pH of biological buffers using the electrochemically active agents. The methods of modulating the binding interactions provided in a biosensor, analytic methods for more accurately controlling and measuring the pH or ionic gradient near the electrodes in such biosensor, and analytic methods for more accurately measuring an analyte of interest in a biological sample.
    Type: Application
    Filed: April 3, 2017
    Publication date: August 10, 2017
    Inventors: Christopher Johnson, Sam Kavusi, Nadezda Fomina, Habib Ahmad, Autumn Maruniak, Christoph Lang, Ashwin Raghunathan
  • Publication number: 20170205372
    Abstract: Device and methods for use in a biosensor comprising a multisite array of test sites, the device and methods being useful for modulating the binding interactions between a (biomolecular) probe or detection agent and an analyte of interest by modulating the pH or ionic gradient near the electrodes in such biosensor. An electrochemically active agent that is suitable for use in biological buffers for changing the pH of the biological buffers. Method for changing the pH of biological buffers using the electrochemically active agents. The methods of modulating the binding interactions provided in a biosensor, analytic methods for more accurately controlling and measuring the pH or ionic gradient near the electrodes in such biosensor, and analytic methods for more accurately measuring an analyte of interest in a biological sample.
    Type: Application
    Filed: April 3, 2017
    Publication date: July 20, 2017
    Inventors: Christopher Johnson, Sam Kavusi, Nadezda Fomina, Habib Ahmad, Autumn Maruniak, Christoph Lang, Ashwin Raghunathan
  • Publication number: 20170008825
    Abstract: Device and methods for use in a biosensor comprising a multisite array of test sites, the device and methods being useful for modulating the binding interactions between a (biomolecular) probe or detection agent and an analyte of interest by modulating the pH or ionic gradient near the electrodes in such biosensor. An electrochemically active agent that is suitable for use in biological buffers for changing the pH of the biological buffers. Method for changing the pH of biological buffers using the electrochemically active agents. The methods of modulating the binding interactions provided in a biosensor, analytic methods for more accurately controlling and measuring the pH or ionic gradient near the electrodes in such biosensor, and analytic methods for more accurately measuring an analyte of interest in a biological sample.
    Type: Application
    Filed: July 6, 2015
    Publication date: January 12, 2017
    Inventors: Christopher Johnson, Sam Kavusi, Nadezda Fomina, Habib Ahmad, Autumn Maruniak, Christoph Lang, Ashwin Raghunathan
  • Publication number: 20170010238
    Abstract: Device and methods for use in a biosensor comprising a multisite array of test sites, the device and methods being useful for modulating the binding interactions between a (biomolecular) probe or detection agent and an analyte of interest by modulating the pH or ionic gradient near the electrodes in such biosensor. An electrochemically active agent that is suitable for use in biological buffers for changing the pH of the biological buffers. Method for changing the pH of biological buffers using the electrochemically active agents. The methods of modulating the binding interactions provided in a biosensor, analytic methods for more accurately controlling and measuring the pH or ionic gradient near the electrodes in such biosensor, and analytic methods for more accurately measuring an analyte of interest in a biological sample.
    Type: Application
    Filed: July 6, 2015
    Publication date: January 12, 2017
    Inventors: Christopher Johnson, Sam Kavusi, Nadezda Fomina, Habib Ahmad, Autumn Maruniak, Christoph Lang, Ashwin Raghunathan
  • Publication number: 20160216225
    Abstract: A system and method for monitoring outlier behavior in an array of n electrodes includes an electrical line, a switching circuit via which the electrodes are individually coupleable to the electrical line, a sensor; and processing circuitry, where, in each of m iterations: (i) a respective subset of electrodes is coupled by the switching circuit to the electrical line, (ii) the sensor senses an electrical parameter produced over the electrical line by the coupled subset of electrodes, and (iii) the processing circuitry obtains from the sensor a respective value of the electrical parameter, m being less than n, and the processing circuitry identifying those of the electrodes that exhibit outlier electrical behavior by finding electrical values to individually ascribe to individual ones of the electrodes of the array, which ascribed values can result in all of the respective values of all of the m iterations.
    Type: Application
    Filed: January 4, 2016
    Publication date: July 28, 2016
    Inventors: Ashwin RAGHUNATHAN, Sam KAVUSI
  • Patent number: D954573
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: June 14, 2022
    Assignee: Fluxergy, LLC
    Inventors: Steve Lee, Ryan Revilla, Roy Heltsley, Ashwin Raghunathan