Patents by Inventor Asumi Jindo

Asumi Jindo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9892950
    Abstract: A ceramic member 30 according to the present invention includes a ceramic base 32, which contains a solid solution Mg(Al)O(N) in which Al and N components are dissolved in magnesium oxide as the main phase, and an electrode 34 disposed on a portion of the ceramic base 32 and containing at least one of nitrides, carbides, carbonitrides, and metals as an electrode component. The ceramic base 32 may have an XRD peak of a (111), (200), or (220) plane of Mg(Al)O(N) measured using a CuK? ray at 2?=36.9 to 39, 42.9 to 44.8, or 62.3 to 65.2 degrees, respectively, between a magnesium oxide cubic crystal peak and an aluminum nitride cubic crystal peak.
    Type: Grant
    Filed: April 7, 2014
    Date of Patent: February 13, 2018
    Assignee: NGK Insulators, Ltd.
    Inventors: Morimichi Watanabe, Asumi Jindo, Yuji Katsuda, Yosuke Sato, Yoshinori Isoda, Atsushi Watanabe
  • Patent number: 9437463
    Abstract: A heating apparatus includes a susceptor having a heating face of heating a semiconductor and a supporting part joined with a back face of the susceptor. The susceptor comprises a ceramic material comprising magnesium, aluminum, oxygen and nitrogen as main components. The material comprises a main phase comprising magnesium-aluminum oxynitride phase exhibiting an XRD peak at least in 2?=47 to 50° by CuK? X-ray.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: September 6, 2016
    Assignee: NGK Insulators, Ltd.
    Inventors: Nobuyuki Kondo, Morimichi Watanabe, Asumi Jindo, Yuji Katsuda, Yosuke Sato, Yoshinori Isoda
  • Patent number: 9287144
    Abstract: A heating apparatus 1A includes a susceptor part 9A having a heating face 9a of heating a semiconductor W, and a ring shaped part 6A provided in the outside of the heating face 9a. The ring shaped part 6A is composed of a ceramic material comprising magnesium, aluminum, oxygen and nitrogen as main components. The ceramic material comprises a main phase comprising magnesium-aluminum oxynitride phase exhibiting an XRD peak at least in 2?=47 to 50° taken by using CuK? ray.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: March 15, 2016
    Assignee: NGK Insulators, Ltd.
    Inventors: Nobuyuki Kondo, Morimichi Watanabe, Asumi Jindo, Yuji Katsuda, Yosuke Sato, Yoshinori Isoda
  • Patent number: 9257315
    Abstract: A member for a semiconductor manufacturing apparatus includes an AlN electrostatic chuck, a cooling plate, and a cooling plate-chuck bonding layer. The cooling plate includes first to third substrates, a first metal bonding layer between the first and second substrates, a second metal bonding layer between the second and third substrates, and a refrigerant path. The first to third substrates are formed of a dense composite material containing SiC, Ti3SiC2, and TiC. The metal bonding layers are formed by thermal compression bonding of the substrates with an Al—Si—Mg metal bonding material interposed between the first and second substrates and between the second and third substrates.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: February 9, 2016
    Assignee: NGK Insulators, Ltd.
    Inventors: Asumi Jindo, Katsuhiro Inoue, Yuji Katsuda, Takashi Kataigi, Shingo Amano, Hiroya Sugimoto
  • Patent number: 9255747
    Abstract: A member for a semiconductor manufacturing apparatus includes an alumina electrostatic chuck, a cooling plate, and a cooling plate-chuck bonding layer. The cooling plate includes first to third substrates, a first metal bonding layer between the first and second substrates, a second metal bonding layer between the second and third substrates, and a refrigerant path. The first to third substrates are formed of a dense composite material containing Si, SiC, and Ti. The metal bonding layers are formed by thermal compression bonding of the substrates with an Al—Si—Mg or Al—Mg metal bonding material interposed between the first and second substrates and between the second and third substrates.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: February 9, 2016
    Assignee: NGK Insulators, Ltd.
    Inventors: Asumi Jindo, Katsuhiro Inoue, Yuji Katsuda, Takashi Kataigi, Shingo Amano, Hiroya Sugimoto
  • Patent number: 9245775
    Abstract: A heating apparatus 11A includes a susceptor having a heating face 12a of heating a semiconductor. The susceptor includes a plate shaped main body 13 and a surface corrosion resistant layer 14 including the heating face. The surface corrosion resistant layer 14 is made of a ceramic material comprising magnesium, aluminum, oxygen and nitrogen as main components. The ceramic material comprises a main phase comprising magnesium-aluminum oxynitride phase exhibiting an XRD peak at least in 2?=47 to 50° by CuK? X-ray.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: January 26, 2016
    Assignee: NGK Insulators, Ltd.
    Inventors: Nobuyuki Kondo, Morimichi Watanabe, Asumi Jindo, Yuji Katsuda, Yosuke Sato, Yoshinori Isoda
  • Patent number: 9202718
    Abstract: An electrostatic chuck 1A includes a susceptor 11A having an adsorption face 11a of adsorbing a semiconductor, and an electrostatic chuck electrode 4 embedded in the susceptor. The susceptor 11A includes a plate shaped main body 3 and a surface corrosion resistant layer 2 including the adsorption face 2. The surface corrosion resistant layer 2 is made of a ceramic material comprising magnesium, aluminum, oxygen and nitrogen as main components. The ceramic material comprises a main phase comprising magnesium-aluminum oxynitride phase exhibiting an XRD peak at least in 2?=47 to 50° by CuK? X-ray.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: December 1, 2015
    Assignee: NGK Insulators, Ltd.
    Inventors: Kenichiro Aikawa, Morimichi Watanabe, Asumi Jindo, Yuji Katsuda, Yosuke Sato, Yoshinori Isoda
  • Patent number: 9188397
    Abstract: A dense composite material of the present invention contains 37% to 60% by mass of silicon carbide grains, also contains titanium silicide, titanium silicon carbide, and titanium carbide, each in an amount smaller than the mass percent of the silicon carbide grains, and has an open porosity of 1% or less. Such a dense composite material is, for example, characterized in that it has an average coefficient of linear thermal expansion at 40° C. to 570° C. of 7.2 to 8.2 ppm/K, a thermal conductivity of 75 W/mK or more, and a 4-point bending strength of 200 MPa or more.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: November 17, 2015
    Assignee: NGK Insulators, Ltd.
    Inventors: Asumi Jindo, Katsuhiro Inoue, Yuji Katsuda
  • Patent number: 9184070
    Abstract: A dense composite material according to the present invention contains, in descending order of content, silicon carbide, titanium silicon carbide, and titanium carbide as three major constituents. The dense composite material contains 51% to 68% by mass of silicon carbide and no titanium silicide and has an open porosity of 1% or less. This dense composite material has properties such as an average linear thermal expansion coefficient of 5.4 to 6.0 ppm/K at 40° C. to 570° C., a thermal conductivity of 100 W/m·K or more, and a four-point bending strength of 300 MPa or more.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: November 10, 2015
    Assignee: NGK Insulators, Ltd.
    Inventors: Asumi Jindo, Katsuhiro Inoue, Yuji Katsuda
  • Patent number: 9184081
    Abstract: Each of electrostatic chucks 1A to 1F includes a susceptor 11A having an adsorption face 11a of adsorbing a semiconductor, and an electrostatic chuck electrode 4 embedded in the susceptor. The susceptor includes a plate shaped main body 3 and a surface corrosion resistant layer 2 including the adsorption face 2. The surface corrosion resistant layer 2 is made of a ceramic material comprising magnesium, aluminum, oxygen and nitrogen as main components. The ceramic material comprises a main phase comprising MgO—AlN solid solution wherein aluminum nitride is dissolved into magnesium oxide.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: November 10, 2015
    Assignee: NGK Insulators, Ltd.
    Inventors: Kenichiro Aikawa, Morimichi Watanabe, Asumi Jindo, Yuji Katsuda, Yosuke Sato, Yoshinori Isoda
  • Patent number: 9142439
    Abstract: A laminated structure 10 includes a first structure 12 containing a main phase of magnesium-aluminum oxynitride, a second structure 14 containing a main phase of aluminum nitride and grain boundary phases of a rare-earth aluminum composite oxide having a garnet-type crystal structure, and a reaction layer 15 formed between the first structure 12 and the second structure 14. The reaction layer 15 is an aluminum nitride layer containing a smaller amount of grain boundary phases 18 of the rare-earth aluminum composite oxide than the second structure 14. The reaction layer 15 of the laminated structure 10 has a thickness of 150 ?m or less. The reaction layer 15 is formed during the sintering by diffusing the grain boundary phases 18 into the first structure 12.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: September 22, 2015
    Assignee: NGK Insulators, Ltd.
    Inventors: Asumi Jindo, Katsuhiro Inoue, Yuji Katsuda
  • Publication number: 20150077895
    Abstract: A member 10 for a semiconductor manufacturing apparatus includes an alumina electrostatic chuck 20, a cooling plate 30, and a cooling plate-chuck bonding layer 40. The cooling plate 30 includes first to third substrates 31 to 33, a first metal bonding layer 34 between the first and second substrates 31 and 32, a second metal bonding layer 35 between the second and third substrates 32 and 33, and a refrigerant path 36. The first to third substrates 31 to 33 are formed of a dense composite material containing Si, SiC, and Ti. The metal bonding layers 34 and 35 are formed by thermal compression bonding of the substrates 31 to 33 with an Al—Si—Mg or Al—Mg metal bonding material interposed between the first and second substrates 31 and 32 and between the second and third substrates 32 and 33.
    Type: Application
    Filed: October 16, 2014
    Publication date: March 19, 2015
    Inventors: Asumi JINDO, Katsuhiro INOUE, Yuji KATSUDA, Takashi KATAIGI, Shingo AMANO, Hiroya SUGIMOTO
  • Publication number: 20150036261
    Abstract: A member 10 for a semiconductor manufacturing apparatus includes an AlN electrostatic chuck 20, a cooling plate 30, and a cooling plate-chuck bonding layer 40. The cooling plate 30 includes first to third substrates 31 to 33, a first metal bonding layer 34 between the first and second substrates 31 and 32, a second metal bonding layer 35 between the second and third substrates 32 and 33, and a refrigerant path 36. The first to third substrates 31 to 33 are formed of a dense composite material containing SiC, Ti3 SiC2, and TiC. The metal bonding layers 34 and 35 axe formed by thermal compression bonding of the substrates 31 to 33 with an Al—Si—Mg metal bonding material interposed between the first and second substrates 31 and 32 and between the second and third substrates 32 and 33.
    Type: Application
    Filed: October 16, 2014
    Publication date: February 5, 2015
    Inventors: Asumi JINDO, Katsuhiro INOUE, Yuji KATSUDA, Takashi KATAIGI, Shingo AMANO, Hiroya SUGIMOTO
  • Publication number: 20140290863
    Abstract: A ceramic member 30 according to the present invention includes a ceramic base 32, which contains a solid solution Mg(Al)O(N) in which Al and N components are dissolved in magnesium oxide as the main phase, and an electrode 34 disposed on a portion of the ceramic base 32 and containing at least one of nitrides, carbides, carbonitrides, and metals as an electrode component. The ceramic base 32 may have an XRD peak of a (111), (200), or (220) plane of Mg(Al)O(N) measured using a CiK? ray at 2?=36.9 to 39, 42.9 to 44.8, or 62.3 to 65.2 degrees, respectively, between a magnesium oxide cubic crystal peak and an aluminum nitride cubic crystal peak.
    Type: Application
    Filed: April 7, 2014
    Publication date: October 2, 2014
    Applicant: NGK Insulators, Ltd.
    Inventors: Morimichi WATANABE, Asumi JINDO, Yuji KATSUDA, Yosuke SATO, Yoshinori ISODA, Atsushi WATANABE
  • Publication number: 20140287245
    Abstract: A dense composite material according to the present invention contains, in descending order of content, silicon carbide, titanium silicon carbide, and titanium carbide as three major constituents. The dense composite material contains 51% to 68% by mass of silicon carbide and no titanium silicide and has an open porosity of 1% or less. This dense composite material has properties such as an average linear thermal expansion coefficient of 5.4 to 6.0 ppm/K at 40° C. to 570° C., a thermal conductivity of 100 W/m·K or more, and a four-point bending strength of 300 MPa or more.
    Type: Application
    Filed: March 20, 2014
    Publication date: September 25, 2014
    Applicant: NGK Insulators, Ltd.
    Inventors: Asumi JINDO, Katsuhiro INOUE, Yuji KATSUDA
  • Publication number: 20140272378
    Abstract: A dense composite material of the present invention contains 37% to 60% by mass of silicon carbide grains, also contains titanium silicide, titanium silicon carbide, and titanium carbide, each in an amount smaller than the mass percent of the silicon carbide grains, and has an open porosity of 1% or less. Such a dense composite material is, for example, characterized in that it has an average coefficient of linear thermal expansion at 40° C. to 570° C. of 7.2 to 8.2 ppm/K, a thermal conductivity of 75 W/mK or more, and a 4-point bending strength of 200 MPa or more.
    Type: Application
    Filed: February 26, 2014
    Publication date: September 18, 2014
    Applicant: NGK Insulators, Ltd.
    Inventors: Asumi JINDO, Katsuhiro INOUE, Yuji KATSUDA
  • Patent number: 8679998
    Abstract: Initially, an Yb2O3 raw material was subjected to uniaxial pressure forming at a pressure of 200 kgf/cm2, so that a disc-shaped compact having a diameter of about 35 mm and a thickness of about 10 mm was produced, and was stored into a graphite mold for firing. Subsequently, firing was performed by using a hot-press method at a predetermined firing temperature (1,500° C.), so as to obtain a corrosion-resistant member for semiconductor manufacturing apparatus. The press pressure during firing was specified to be 200 kgf/cm2 and an Ar atmosphere was kept until the firing was finished. The retention time at the firing temperature (maximum temperature) was specified to be 4 hours. In this manner, the corrosion-resistant member for semiconductor manufacturing apparatus made from an Yb2O3 sintered body having an open porosity of 0.2% was obtained.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: March 25, 2014
    Assignee: NGK Insulators, Ltd.
    Inventors: Morimichi Watanabe, Yuji Katsuda, Toru Hayase, Asumi Jindo
  • Publication number: 20140079946
    Abstract: A laminated structure 10 includes a first structure 12 containing a main phase of magnesium-aluminum oxynitride, a second structure 14 containing a main phase of aluminum nitride and grain boundary phases of a rare-earth aluminum composite oxide having a garnet-type crystal structure, and a reaction layer 15 formed between the first structure 12 and the second structure 14. The reaction layer 15 is an aluminum nitride layer containing a smaller amount of grain boundary phases 18 of the rare-earth aluminum composite oxide than the second structure 14. The reaction layer 15 of the laminated structure 10 has a thickness of 150 ?m or less. The reaction layer 15 is formed during the sintering by diffusing the grain boundary phases 18 into the first structure 12.
    Type: Application
    Filed: September 10, 2013
    Publication date: March 20, 2014
    Applicant: NGK Insulators, Ltd.
    Inventors: Asumi JINDO, Katsuhiro INOUE, Yuji KATSUDA
  • Patent number: 8597776
    Abstract: A ceramic material mainly contains magnesium, aluminum, oxygen, and nitrogen, in which the ceramic material has a magnesium-aluminum oxynitride phase serving as a main phase, wherein XRD peaks of the magnesium-aluminum oxynitride phase measured with CuK? radiation appear at at least 2?=47 to 50°.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: December 3, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Morimichi Watanabe, Asumi Jindo, Yuji Katsuda, Yosuke Sato, Yoshinori Isoda
  • Patent number: 8541328
    Abstract: A ceramic material according to the present invention mainly contains magnesium, aluminum, oxygen, and nitrogen, the ceramic material has the crystal phase of a MgO—AlN solid solution in which aluminum nitride is dissolved in magnesium oxide, the crystal phase serving as a main phase. Preferably, XRD peaks corresponding to the (200) and (220) planes of the MgO—AlN solid solution measured with CuK? radiation appear at 2?=42.9 to 44.8° and 62.3 to 65.2°, respectively, the XRD peaks being located between peaks of cubic magnesium oxide and peaks of cubic aluminum nitride. More preferably, the XRD peak corresponding to the (111) plane appears at 2?=36.9 to 39°, the XRD peak being located between a peak of cubic magnesium oxide and a peak of cubic aluminum nitride.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: September 24, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Morimichi Watanabe, Asumi Jindo, Yuji Katsuda, Yosuke Sato, Yoshinori Isoda