Patents by Inventor Aswin Nadamuni Raghavan
Aswin Nadamuni Raghavan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11605231Abstract: A low-cost, low-power, stand-alone sensor platform having a visible-range camera sensor, a thermopile array, a microphone, a motion sensor, and a microprocessor that is configured to perform occupancy detection and counting while preserving the privacy of occupants. The platform is programmed to extract shape/texture from images in spatial domain; motion from video in time domain; and audio features in frequency domain. Embedded binarized neural networks are used for efficient object of interest detection. The platform is also programmed with advanced fusion algorithms for multiple sensor modalities addressing dependent sensor observations. The platform may be deployed for (i) residential use in detecting occupants for autonomously controlling building systems, such as HVAC and lighting systems, to provide energy savings, (ii) security and surveillance, such as to detect loitering and surveil places of interest, (iii) analyzing customer behavior and flows, (iv) identifying high performing stores by retailers.Type: GrantFiled: September 17, 2019Date of Patent: March 14, 2023Assignee: SYRACUSE UNIVERSITYInventors: Senem Velipasalar, Sek Meng Chai, Aswin Nadamuni Raghavan
-
Patent number: 11494597Abstract: Techniques are disclosed for training machine learning systems. An input device receives training data comprising pairs of training inputs and training labels. A generative memory assigns training inputs to each archetype task of a plurality of archetype tasks, each archetype task representative of a cluster of related tasks within a task space and assigns a skill to each archetype task. The generative memory generates, from each archetype task, auxiliary data comprising pairs of auxiliary inputs and auxiliary labels. A machine learning system trains a machine learning model to apply a skill assigned to an archetype task to training and auxiliary inputs assigned to the archetype task to obtain output labels corresponding to the training and auxiliary labels associated with the training and auxiliary inputs assigned to the archetype task to enable scalable learning to obtain labels for new tasks for which the machine learning model has not previously been trained.Type: GrantFiled: March 20, 2020Date of Patent: November 8, 2022Assignee: SRI INTERNATIONALInventors: Aswin Nadamuni Raghavan, Jesse Hostetler, Indranil Sur, Abrar Abdullah Rahman, Sek Meng Chai
-
Patent number: 11481495Abstract: A method, apparatus and system for anomaly detection in a processor based system includes training a deep learning sequence prediction model using observed baseline behavioral sequences of at least one processor behavior of the processor based system, predicting baseline behavioral sequences from the observed baseline behavioral sequences using the sequence prediction model, determining a baseline reconstruction error distribution profile using the baseline behavioral sequences and the predicted baseline behavioral sequences, predicting test behavioral sequences from observed, test behavioral sequences using the sequence prediction model, determining a testing reconstruction error distribution profile using the observed test behavioral sequences and the predicted test behavioral sequences, and comparing the baseline reconstruction error distribution profile to the testing reconstruction error distribution profile to determine if an anomaly exists in a processor behavior of the processor based system.Type: GrantFiled: May 13, 2019Date of Patent: October 25, 2022Assignee: SRI InternationalInventors: Sek M. Chai, Zecheng He, Aswin Nadamuni Raghavan, Ruby B. Lee
-
Patent number: 11429862Abstract: Techniques are disclosed for training a deep neural network (DNN) for reduced computational resource requirements. A computing system includes a memory for storing a set of weights of the DNN. The DNN includes a plurality of layers. For each layer of the plurality of layers, the set of weights includes weights of the layer and a set of bit precision values includes a bit precision value of the layer. The weights of the layer are represented in the memory using values having bit precisions equal to the bit precision value of the layer. The weights of the layer are associated with inputs to neurons of the layer. Additionally, the computing system includes processing circuitry for executing a machine learning system configured to train the DNN. Training the DNN comprises optimizing the set of weights and the set of bit precision values.Type: GrantFiled: September 17, 2018Date of Patent: August 30, 2022Assignee: SRI INTERNATIONALInventors: Sek Meng Chai, Aswin Nadamuni Raghavan, Samyak Parajuli
-
Publication number: 20220198782Abstract: An edge device comprising a feature extractor and a reconfigurator. The feature extractor comprises a first neural network for encoding input information into data vectors and extracting particular data vectors representing features within the input information, wherein the first neural network comprises at least one encoder layer and at least one adaptor layer. The reconfigurator is coupled to the feature extractor and comprises a second neural network for classifying the particular data vectors and wherein, upon requiring additional features to be extracted, the reconfigurator adapts at least one layer in the first neural network, second neural network or both by performing at least one of: (1) altering weights, (2) adding layers, (3) deleting layers, (4) reordering layers to improve classification of particular data vector. The first neural network, the second neural network or both are trained using gradient-free training.Type: ApplicationFiled: December 16, 2021Publication date: June 23, 2022Inventors: David Chao ZHANG, Michael R. PIACENTINO, Aswin NADAMUNI RAGHAVAN
-
Patent number: 11328206Abstract: Operations of computing devices are managed using one or more deep neural networks (DNNs), which may receive, as DNN inputs, data from sensors, instructions executed by processors, and/or outputs of other DNNs. One or more DNNs, which may be generative, can be applied to the DNN inputs to generate DNN outputs based on relationships between DNN inputs. The DNNs may include DNN parameters learned using one or more computing workloads. The DNN outputs may be, for example, control signals for managing operations of computing devices, predictions for use in generating control signals, warnings indicating an acceptable state is predicted, and/or inputs to one or more neural networks. The signals enhance performance, efficiency, and/or security of one or more of the computing devices. DNNs can be dynamically trained to personalize operations by updating DNN weights or other parameters.Type: GrantFiled: June 16, 2017Date of Patent: May 10, 2022Assignee: SRI InlernationalInventors: Sek M. Chai, David C. Zhang, Mohamed R. Amer, Timothy J. Shields, Aswin Nadamuni Raghavan, Bhaskar Ramamurthy
-
Patent number: 10789755Abstract: This disclosure describes techniques that include generating, based on a description of a scene, a movie or animation that represents at least one possible version of a story corresponding to the description of the scene. This disclosure also describes techniques for training a machine learning model to generate predefined data structures from textual information, visual information, and/or other information about a story, an event, a scene, or a sequence of events or scenes within a story. This disclosure also describes techniques for using GANs to generate, from input, an animation of motion (e.g., an animation or a video clip). This disclosure also describes techniques for implementing an explainable artificial intelligence system that may provide end users with information (e.g., through a user interface) that enables an understanding of at least some of the decisions made by the AI system.Type: GrantFiled: December 21, 2018Date of Patent: September 29, 2020Assignee: SRI InternationalInventors: Mohamed R. Amer, Timothy J. Meo, Aswin Nadamuni Raghavan, Alex C. Tozzo, Amir Tamrakar, David A. Salter, Kyung-Yoon Kim
-
Publication number: 20200302339Abstract: Techniques are disclosed for training machine learning systems. An input device receives training data comprising pairs of training inputs and training labels. A generative memory assigns training inputs to each archetype task of a plurality of archetype tasks, each archetype task representative of a cluster of related tasks within a task space and assigns a skill to each archetype task. The generative memory generates, from each archetype task, auxiliary data comprising pairs of auxiliary inputs and auxiliary labels. A machine learning system trains a machine learning model to apply a skill assigned to an archetype task to training and auxiliary inputs assigned to the archetype task to obtain output labels corresponding to the training and auxiliary labels associated with the training and auxiliary inputs assigned to the archetype task to enable scalable learning to obtain labels for new tasks for which the machine learning model has not previously been trained.Type: ApplicationFiled: March 20, 2020Publication date: September 24, 2020Inventors: Aswin Nadamuni Raghavan, Jesse Hostetler, Indranil Sur, Abrar Abdullah Rahman, Sek Meng Chai
-
Publication number: 20200293657Abstract: A method, apparatus and system for anomaly detection in a processor based system includes training a deep learning sequence prediction model using observed baseline behavioral sequences of at least one processor behavior of the processor based system, predicting baseline behavioral sequences from the observed baseline behavioral sequences using the sequence prediction model, determining a baseline reconstruction error distribution profile using the baseline behavioral sequences and the predicted baseline behavioral sequences, predicting test behavioral sequences from observed, test behavioral sequences using the sequence prediction model, determining a testing reconstruction error distribution profile using the observed test behavioral sequences and the predicted test behavioral sequences, and comparing the baseline reconstruction error distribution profile to the testing reconstruction error distribution profile to determine if an anomaly exists in a processor behavior of the processor based system.Type: ApplicationFiled: May 13, 2019Publication date: September 17, 2020Inventors: Sek M. Chai, Zecheng He, Aswin Nadamuni Raghavan, Ruby B. Lee
-
Publication number: 20200134461Abstract: Techniques are disclosed for training a deep neural network (DNN) for reduced computational resource requirements. A computing system includes a memory for storing a set of weights of the DNN. The DNN includes a plurality of layers. For each layer of the plurality of layers, the set of weights includes weights of the layer and a set of bit precision values includes a bit precision value of the layer. The weights of the layer are represented in the memory using values having bit precisions equal to the bit precision value of the layer. The weights of the layer are associated with inputs to neurons of the layer. Additionally, the computing system includes processing circuitry for executing a machine learning system configured to train the DNN. Training the DNN comprises optimizing the set of weights and the set of bit precision values.Type: ApplicationFiled: September 17, 2018Publication date: April 30, 2020Inventors: Sek Meng Chai, Aswin Nadamuni Raghavan, Samyak Parajuli
-
Publication number: 20200089967Abstract: A low-cost, low-power, stand-alone sensor platform having a visible-range camera sensor, a thermopile array, a microphone, a motion sensor, and a microprocessor that is configured to perform occupancy detection and counting while preserving the privacy of occupants. The platform is programmed to extract shape/texture from images in spatial domain; motion from video in time domain; and audio features in frequency domain. Embedded binarized neural networks are used for efficient object of interest detection. The platform is also programmed with advanced fusion algorithms for multiple sensor modalities addressing dependent sensor observations. The platform may be deployed for (i) residential use in detecting occupants for autonomously controlling building systems, such as HVAC and lighting systems, to provide energy savings, (ii) security and surveillance, such as to detect loitering and surveil places of interest, (iii) analyzing customer behavior and flows, (iv) identifying high performing stores by retailers.Type: ApplicationFiled: September 17, 2019Publication date: March 19, 2020Applicant: Syracuse UniversityInventors: Senem Velipasalar, Sek Meng Chai, Aswin Nadamuni Raghavan
-
Publication number: 20190304157Abstract: This disclosure describes techniques that include generating, based on a description of a scene, a movie or animation that represents at least one possible version of a story corresponding to the description of the scene. This disclosure also describes techniques for training a machine learning model to generate predefined data structures from textual information, visual information, and/or other information about a story, an event, a scene, or a sequence of events or scenes within a story. This disclosure also describes techniques for using GANs to generate, from input, an animation of motion (e.g., an animation or a video clip). This disclosure also describes techniques for implementing an explainable artificial intelligence system that may provide end users with information (e.g., through a user interface) that enables an understanding of at least some of the decisions made by the AI system.Type: ApplicationFiled: December 21, 2018Publication date: October 3, 2019Inventors: Mohamed R. Amer, Timothy J. Meo, Aswin Nadamuni Raghavan, Alex C. Tozzo, Amir Tamrakar, David A. Salter, Kyung-Yoon Kim
-
Publication number: 20170364792Abstract: Operations of computing devices are managed using one or more deep neural networks (DNNs), which may receive, as DNN inputs, data from sensors, instructions executed by processors, and/or outputs of other DNNs. One or more DNNs, which may be generative, can be applied to the DNN inputs to generate DNN outputs based on relationships between DNN inputs. The DNNs may include DNN parameters learned using one or more computing workloads. The DNN outputs may be, for example, control signals for managing operations of computing devices, predictions for use in generating control signals, warnings indicating an acceptable state is predicted, and/or inputs to one or more neural networks. The signals enhance performance, efficiency, and/or security of one or more of the computing devices. DNNs can be dynamically trained to personalize operations by updating DNN weights or other parameters.Type: ApplicationFiled: June 16, 2017Publication date: December 21, 2017Inventors: Sek M. Chai, David C. Zhang, Mohamed R. Amer, Timothy J. Shields, Aswin Nadamuni Raghavan, Bhaskar Ramamurthy