Patents by Inventor Atsuhiro Yukumoto

Atsuhiro Yukumoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150044100
    Abstract: A degradant concentration measurement device 14 according to the invention has an electric conductivity measurement instrument 71A measuring the electric conductivity of a lean solution 16 that is an acidic gas-absorbing solution and detection means 72 obtaining the concentration of a degradant contained in a lean solution 16 from the measured electric conductivity of the lean solution 16 based on the relationship between the previously-obtained electric conductivity of the lean solution 16 and the concentration of the degradant contained in the lean solution 16.
    Type: Application
    Filed: February 8, 2013
    Publication date: February 12, 2015
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Atsuhiro Yukumoto, Kouji Horizoe, Yudai Kato, Haruaki Hirayama, Kazuo Ishida
  • Patent number: 8946307
    Abstract: A biomass gasification gas purification system includes a dust collector for removing dust in biomass gasification gas (containing tar components) acquired by gasifying biomass by a biomass gasification furnace, a desulfurizer for removing sulfur oxide components in the dust-removed biomass gasification gas, a pre-reforming reactor for reforming tar components in the desulfurized biomass gasification gas, a steam feed unit for feeding steam to an upstream side of the pre-reforming reactor, and a natural-gas feed unit for feeding natural gas on an upstream side of the desulfurizer.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: February 3, 2015
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Atsuhiro Yukumoto, Wataru Matsubara, Shinya Tachibana, Toshiya Akiba, Katsuhiko Shinoda, Takeshi Amari
  • Publication number: 20140346403
    Abstract: A CO shift reaction apparatus is configured to suppress degradation of catalytic activity of a CO shift catalyst containing molybdenum and prolong the life of the catalyst. A CO shift reaction method uses the CO shift reaction apparatus. The CO shift reaction apparatus is configured to reform carbon monoxide contained in gas and includes a CO shift catalyst containing molybdenum; a reactor at least comprising: a gas inlet for introducing gas; a CO shift catalyst layer filled with the CO shift catalyst and through which the introduced gas passes; and a gas outlet for discharging the gas which has passed through the CO shift catalyst layer; and cooling means configured to cool the CO shift catalyst layer.
    Type: Application
    Filed: December 13, 2012
    Publication date: November 27, 2014
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Koji Higashino, Toshinobu Yasutake, Shuji Fujii, Masanao Yonemura, Makoto Susaki, Kaori Yoshida, Yoshio Seiki, Atsuhiro Yukumoto
  • Patent number: 8858798
    Abstract: The present invention includes a dehydration method comprising the steps of providing a distilled process-target fluid to a water separation membrane device via a heat exchanger; separating the process-target fluid into a dehydrated product and water by using the water separation membrane device; detecting a temperature of any one of the water separation membrane device and the process-target fluid supplied to the water separation membrane device by using a temperature monitoring device; and controlling the temperature of the process-target fluid so that the temperature of the distilled process-target fluid being maintained at a temperature higher than the condensation temperature of the distillate by 5 to 10° C. by using a temperature adjustment device provided in the water separation membrane device.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: October 14, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Hiroyuki Osora, Yoshio Seiki, Atsuhiro Yukumoto
  • Patent number: 8821730
    Abstract: The present invention includes a dehydration method comprising the steps of providing a distilled process-target fluid to a water separation membrane device via a heat exchanger; separating the process-target fluid into a dehydrated product and water by using the water separation membrane device; detecting a temperature of any one of the water separation membrane device and the process-target fluid supplied to the water separation membrane device by using a temperature monitoring device; and controlling the temperature of the process-target fluid so that the temperature of the distilled process-target fluid being maintained at a temperature higher than the condensation temperature of the distillate by 5 to 10° C. by using a temperature adjustment device provided in the water separation membrane device.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: September 2, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Hiroyuki Osora, Yoshio Seiki, Atsuhiro Yukumoto
  • Patent number: 8721890
    Abstract: A dehydrating system using multiple water separation membranes aims to prevent damage to the water separation membrane units and also to take appropriate measures against decrease in water permeation rate of the water separation membranes. Provided is a dehydrating system (100) for removing water from a target fluid, including at least two water separation membrane units (1, 2, 3) connected in series in a flow direction of the target fluid; two or more heat exchangers (11, 21, 31) respectively provided in front of the water separation membrane units (1, 2, 3), each of the heat exchangers (11, 21, 31) raising a temperature of the target fluid to a temperature which is lower than a boiling point of the target fluid but close to the boiling point.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: May 13, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Atsuhiro Yukumoto, Hiroyuki Osora, Yoshio Seiki, Haruaki Hirayama, Kazuto Kobayashi, Yukio Tanaka
  • Publication number: 20140051895
    Abstract: The present invention includes a dehydration method comprising the steps of providing a distilled process-target fluid to a water separation membrane device via a heat exchanger; separating the process-target fluid into a dehydrated product and water by using the water separation membrane device; detecting a temperature of any one of the water separation membrane device and the process-target fluid supplied to the water separation membrane device by using a temperature monitoring device; and controlling the temperature of the process-target fluid so that the temperature of the distilled process-target fluid being maintained at a temperature higher than the condensation temperature of the distillate by 5 to 10° C. by using a temperature adjustment device provided in the water separation membrane device.
    Type: Application
    Filed: October 14, 2013
    Publication date: February 20, 2014
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hiroyuki Osora, Yoshio Seiki, Atsuhiro Yukumoto
  • Patent number: 8585904
    Abstract: The present invention includes: a water separation membrane device 2 that separates a process-target fluid into a dehydrated product and water; and a temperature monitoring device 3 for the water separation membrane device 2. The temperature monitoring device 3 detects a temperature. Further, a temperature adjustment device 4 is provided in a previous stage of the water separation membrane device 2. The temperature adjustment device 4 controls a temperature of the process-target fluid on the basis of the temperature detected by the temperature adjustment device 3 to thereby optimize an amount of water permeation in a separation process in the water separation membrane device 2.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: November 19, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Hiroyuki Osora, Yoshio Seiki, Atsuhiro Yukumoto
  • Patent number: 8496731
    Abstract: There is provided a method for transporting a fluid, in which even if the fluid is transported for a long period of time, dehydration after transportation is not needed, and the transported fluid can be used immediately after transportation. Specifically, there is provided a method for transporting a fluid, comprising steps of: dehydrating some of the transportation fluid during transportation by using a dehydration system comprising a separation membrane through which water permeates, and returning the dehydrated fluid to the transportation fluid so as to keep water content in the transportation fluid in a fixed range.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: July 30, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Atsuhiro Yukumoto, Hiroyuki Osora, Yoshio Seiki, Shuichi Kashima, Haruaki Hirayama, Hiroko Oguchi, Noboru Oguchi, Sachiko Oguchi
  • Patent number: 8496806
    Abstract: Provided is a dehydrator that requires no excessively large apparatus structure and achieves cost-saving while maintaining suction efficiency at a desired level by use of suction means. A dehydrator 100 for separating water from a target liquid 13 includes at least two water separation membrane units 1a and 1b which are provided in series in a flow direction of the target liquid 13. The water separation membrane unit 1a on an upstream side out of the water separation membrane units 1a and 1b is connected to suction means 7 for sucking a gas phase containing water through one condenser 4, and the one condenser 4 condenses water in the gas phase and thereby separates the water. The gas phase sucked by the suction means 7 from the one condenser 4 is transferred to at least one downstream condenser 8 provided downstream of the one condenser 4, and the downstream condenser 8 condenses water in the gas phase and thereby separates the water.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: July 30, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Atsuhiro Yukumoto, Hiroyuki Osora, Yoshio Seiki, Haruaki Hirayama, Yukio Tanaka, Hideo Kashiwagi, Katsufumi Inoue
  • Publication number: 20130109766
    Abstract: A biomass gasification gas purification system has a dust removal apparatus for filtering soot and dust from biomass gasification gas (including tar component) obtained through the gasification of the biomass using a biomass gasification furnace, a desulfurization apparatus for removing sulfur oxide component in the filtered biomass gasification gas, first to third pre-reformation reactors that provide pre-reforming catalyst for reforming the tar component in the biomass gasification gas after desulfurization, and first and second coolers that are interposed between the first to third pre-reformation reactors, and for cooling the reformed gas.
    Type: Application
    Filed: August 3, 2011
    Publication date: May 2, 2013
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Atsuhiro Yukumoto, Wataru Matsubara, Shinya Tachibana, Toshiya Akiba, Katsuhiko Shinoda, Takeshi Amari
  • Publication number: 20130085307
    Abstract: A biomass gasification gas purification system includes a dust collector for removing dust in biomass gasification gas (containing tar components) acquired by gasifying biomass by a biomass gasification furnace, a desulfurizer for removing sulfur oxide components in the dust-removed biomass gasification gas, a pre-reforming reactor for reforming tar components in the desulfurized biomass gasification gas, a steam feed unit for feeding steam to an upstream side of the pre-reforming reactor, and a natural-gas feed unit for feeding natural gas on an upstream side of the desulfurizer.
    Type: Application
    Filed: August 3, 2011
    Publication date: April 4, 2013
    Inventors: Atsuhiro Yukumoto, Wataru Matsubara, Shinya Tachibana, Toshiya Akiba, Katsuhiko Shinoda, Takeshi Amari
  • Patent number: 8142662
    Abstract: A dehydrating system is designed to maintain the availability of a plant having the dehydrating system using a water separation membrane by allowing a water separation membrane unit to be replaced while the plant is in operation. The dehydrating system comprises at least two water separation membrane units in use arranged parallel to the direction of flow of a fluid to be processed, is configured so that at least one spare water separation membrane unit can be installed parallel to the direction of flow of the fluid to be processed with respect to the at least two water separation membrane units, having monitoring devices for the product fluid to be taken out, and maintains the properties of the product fluid by operating the spare water separation membrane unit depending on the properties of the product fluid monitored by the monitoring devices.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: March 27, 2012
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Hiroyuki Osora, Yoshio Seiki, Atsuhiro Yukumoto, Yukio Tanaka, Shinji Ogino, Haruaki Hirayama
  • Publication number: 20110011725
    Abstract: Provided are a dehydrating system and a dehydrating method which achieve improvement in a membrane performance. The dehydrating system includes a first preheater 3a; multiple dehydrating apparatuses 1a, 1b and 1c which are connected in series downstream of the preheater and which are configured to remove water from an organic aqueous solution; and returning means 6 for returning a part of the organic aqueous solution having passed through one or more of the dehydrating apparatuses to the dehydrating apparatuses or the dehydrating apparatus upstream of the dehydrating apparatuses.
    Type: Application
    Filed: December 24, 2008
    Publication date: January 20, 2011
    Applicant: Mitsubishi Heavy Industries, Ltd.
    Inventors: Yukio Tanaka, Hiroyuki Osora, Yoshio Seiki, Atsuhiro Yukumoto, Haruaki Hirayama, Shinji Ogino
  • Publication number: 20100320148
    Abstract: A dehydrating system using multiple water separation membranes aims to prevent damage to the water separation membrane units and also to take appropriate measures against decrease in water permeation rate of the water separation membranes. Provided is a dehydrating system (100) for removing water from a target fluid, including at least two water separation membrane units (1, 2, 3) connected in series in a flow direction of the target fluid; two or more heat exchangers (11, 21, 31) respectively provided in front of the water separation membrane units (1, 2, 3), each of the heat exchangers (11, 21, 31) raising a temperature of the target fluid to a temperature which is lower than a boiling point of the target fluid but close to the boiling point.
    Type: Application
    Filed: December 24, 2008
    Publication date: December 23, 2010
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Atsuhiro Yukumoto, Hiroyuki Osora, Yoshio Seiki, Haruaki Hirayama, Kazuto Kobayashi, Yukio Tanaka
  • Publication number: 20100314320
    Abstract: The present invention includes: a water separation membrane device 2 that separates a process-target fluid into a dehydrated product and water; and a temperature monitoring device 3 for the water separation membrane device 2. The temperature monitoring device 3 detects a temperature. Further, a temperature adjustment device 4 is provided in a previous stage of the water separation membrane device 2. The temperature adjustment device 4 controls a temperature of the process-target fluid on the basis of the temperature detected by the temperature adjustment device 3 to thereby optimize an amount of water permeation in a separation process in the water separation membrane device 2.
    Type: Application
    Filed: March 14, 2008
    Publication date: December 16, 2010
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hiroyuki Osora, Yoshio Seiki, Atsuhiro Yukumoto
  • Publication number: 20100288682
    Abstract: A dehydrating system is designed to maintain the availability of a plant having the dehydrating system using a water separation membrane by allowing a water separation membrane unit to be replaced while the plant is in operation. The dehydrating system comprises at least two water separation membrane units in use arranged parallel to the direction of flow of a fluid to be processed, is configured so that at least one spare water separation membrane unit can be installed parallel to the direction of flow of the fluid to be processed with respect to the at least two water separation membrane units, having monitoring devices for the product fluid to be taken out, and maintains the properties of the product fluid by operating the spare water separation membrane unit depending on the properties of the product fluid monitored by the monitoring devices.
    Type: Application
    Filed: May 13, 2009
    Publication date: November 18, 2010
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hiroyuki Osora, Yoshio Seiki, Atsuhiro Yukumoto, Yukio Tanaka, Shinji Ogino, Haruaki Hirayama
  • Publication number: 20100258197
    Abstract: There is provided a method for transporting a fluid, in which even if the fluid is transported for a long period of time, dehydration after transportation is not needed, and the transported fluid can be used immediately after transportation. Specifically, there is provided a method for transporting a fluid, comprising steps of: dehydrating some of the transportation fluid during transportation by using a dehydration system comprising a separation membrane through which water permeates, and returning the dehydrated fluid to the transportation fluid so as to keep water content in the transportation fluid in a fixed range.
    Type: Application
    Filed: March 14, 2008
    Publication date: October 14, 2010
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Atsuhiro Yukumoto, Hiroyuki Osora, Yoshio Seiki, Akira Oguchi, Shuichi Kashima, Haruaki Hirayama
  • Publication number: 20100219128
    Abstract: A dehydration system has improved membrane performance. The dehydration system includes a dehydrating apparatus 1 comprising, in a dehydrating apparatus body, a water separation membrane module in which a water separation membrane having at least one flow path extending in the up and down direction to cause a liquid 50 to pass through is provided with a liquid inlet at the bottom thereof and a liquid outlet at the top thereof; and a shell 11 defined by the outer surface of the water separation membrane module and the inner wall of the dehydrating apparatus body, wherein water in the liquid permeates the water separation membrane while the liquid rises in the water separation membrane, and moves in the shell, whereby the liquid is dehydrated; a pressure reducing device 13 for reducing the pressure of the shell 11; a pressure device for pressurizing the liquid before the liquid is fed to the water separation membrane module; and a heating device for heating the pressurized liquid.
    Type: Application
    Filed: March 14, 2008
    Publication date: September 2, 2010
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Yoshio Seiki, Atsuhiro Yukumoto, Hiroyuki Osora, Haruaki Hirayama
  • Publication number: 20100206789
    Abstract: Provided is a dehydrator that requires no excessively large apparatus structure and achieves cost-saving while maintaining suction efficiency at a desired level by use of suction means. A dehydrator 100 for separating water from a target liquid 13 includes at least two water separation membrane units 1a and 1b which are provided in series in a flow direction of the target liquid 13. The water separation membrane unit 1a on an upstream side out of the water separation membrane units 1a and 1b is connected to suction means 7 for sucking a gas phase containing water through one condenser 4, and the one condenser 4 condenses water in the gas phase and thereby separates the water. The gas phase sucked by the suction means 7 from the one condenser 4 is transferred to at least one downstream condenser 8 provided downstream of the one condenser 4, and the downstream condenser 8 condenses water in the gas phase and thereby separates the water.
    Type: Application
    Filed: January 13, 2009
    Publication date: August 19, 2010
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Atsuhiro Yukumoto, Hiroyuki Osora, Yoshio Seiki, Haruaki Hirayama, Yukio Tanaka, Hideo Kashiwagi, Katsufumi Inoue