Patents by Inventor Atsunobu Kawamoto

Atsunobu Kawamoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220139794
    Abstract: The present invention relates to a semiconductor device including: a semiconductor substrate having: an active region through which a main current flows; and a termination region around the active region; a polyimide film disposed in the active region and the termination region; and a passivation film disposed as a film underlying the polyimide film, wherein the termination region includes, in order from a side of the active region, a breakdown voltage holding region and an outermost peripheral region, the polyimide film is disposed except for a dicing remaining portion of the outermost peripheral region, and the passivation film is disposed, as the underlying film, at least in a region where the polyimide film is disposed.
    Type: Application
    Filed: April 9, 2019
    Publication date: May 5, 2022
    Applicant: Mitsubishi Electric Corporation
    Inventors: Kazuhiro NISHIMURA, Makoto UENO, Shintaro ARAKI, Atsunobu KAWAMOTO, Masanori TOMIOKA
  • Patent number: 10651113
    Abstract: An end of a high-voltage electrode (5) is connected to a high-voltage terminal of a semiconductor device (1). An end of a low-voltage electrode (6) is connected to a low-voltage terminal of the semiconductor device (1). A resin (15) seals the semiconductor device (1), the end of the high-voltage electrode (5), and the end of the low-voltage electrode (6). A first discharge electrode (16) is provided to a portion of the high-voltage electrode (5) not covered by the resin (15). A second discharge electrode (17) is provided to a portion of the low-voltage electrode (6) not covered by the resin (15). The first and second discharge electrodes (16,17) protrude to face each other.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: May 12, 2020
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kazuhiro Nishimura, Atsunobu Kawamoto, Koji Yamamoto
  • Publication number: 20190080986
    Abstract: An end of a high-voltage electrode (5) is connected to a high-voltage terminal of a semiconductor device (1). An end of a low-voltage electrode (6) is connected to a low-voltage terminal of the semiconductor device (1). A resin (15) seals the semiconductor device (1), the end of the high-voltage electrode (5), and the end of the low-voltage electrode (6). A first discharge electrode (16) is provided to a portion of the high-voltage electrode (5) not covered by the resin (15). A second discharge electrode (17) is provided to a portion of the low-voltage electrode (6) not covered by the resin (15). The first and second discharge electrodes (16,17) protrude to face each other.
    Type: Application
    Filed: May 31, 2016
    Publication date: March 14, 2019
    Applicant: Mitsubishi Electric Corporation
    Inventors: Kazuhiro NISHIMURA, Atsunobu KAWAMOTO, Koji YAMAMOTO
  • Patent number: 10128735
    Abstract: A control circuit for a semiconductor switching element includes a control terminal, a main electrode terminal, and a current sensing terminal, and controls the semiconductor switching element including a diode connected to the main electrode terminal or the current sensing terminal. The control circuit includes an overheat detection circuit, a current detection circuit, and an interruption circuit. The overheat detection circuit outputs an overheat detection signal when a temperature detected based on an output of the diode is equal to or higher than a predetermined set temperature. The current detection circuit outputs a current detection signal when an output value of the current sensing terminal is equal to or greater than a predetermined set current value. The interruption circuit turns off the semiconductor switching element when both the overheat detection signal from the overheat detection circuit and the current detection signal from the current detection circuit are input.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: November 13, 2018
    Assignee: Mitsubishi Electric Corporation
    Inventors: Koji Yamamoto, Atsunobu Kawamoto, Shinsuke Godo
  • Publication number: 20180062499
    Abstract: A control circuit for a semiconductor switching element includes a control terminal, a main electrode terminal, and a current sensing terminal, and controls the semiconductor switching element including a diode connected to the main electrode terminal or the current sensing terminal. The control circuit includes an overheat detection circuit, a current detection circuit, and an interruption circuit. The overheat detection circuit outputs an overheat detection signal when a temperature detected based on an output of the diode is equal to or higher than a predetermined set temperature. The current detection circuit outputs a current detection signal when an output value of the current sensing terminal is equal to or greater than a predetermined set current value. The interruption circuit turns off the semiconductor switching element when both the overheat detection signal from the overheat detection circuit and the current detection signal from the current detection circuit are input.
    Type: Application
    Filed: August 26, 2015
    Publication date: March 1, 2018
    Applicant: Mitsubishi Electric Corporation
    Inventors: Koji YAMAMOTO, Atsunobu KAWAMOTO, Shinsuke GODO
  • Patent number: 9859238
    Abstract: An object of the present invention is to provide a semiconductor device capable of eliminating unevenness of current distribution in a plane. A semiconductor device according to the present invention is a semiconductor device including a transistor cell region where a plurality of transistor cells is arranged on a semiconductor substrate, the semiconductor device including an electrode pad which is arranged avoiding the transistor cell region on the semiconductor substrate and is electrically connected to a one-side current electrode of each of the cells, in which the transistor cell region contains a plurality of regions each of which has a different current drive capability from each other depending on a distance from the electrode pad.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: January 2, 2018
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shinsuke Godo, Atsunobu Kawamoto, Koji Yamamoto
  • Publication number: 20160358869
    Abstract: An object of the present invention is to provide a semiconductor device capable of eliminating unevenness of current distribution in a plane. A semiconductor device according to the present invention is a semiconductor device including a transistor cell region where a plurality of transistor cells is arranged on a semiconductor substrate, the semiconductor device including an electrode pad which is arranged avoiding the transistor cell region on the semiconductor substrate and is electrically connected to a one-side current electrode of each of the cells, in which the transistor cell region contains a plurality of regions each of which has a different current drive capability from each other depending on a distance from the electrode pad.
    Type: Application
    Filed: June 26, 2014
    Publication date: December 8, 2016
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Shinsuke GODO, Atsunobu KAWAMOTO, Koji YAMAMOTO
  • Patent number: 8605408
    Abstract: A power semiconductor device for an igniter comprises: a first semiconductor switching device; and an integrated circuit, wherein the integrated circuit includes: a second semiconductor switching device connected in parallel with the first semiconductor switching device and having a smaller current capacity than a current capacity of the first semiconductor switching device; a delay circuit delaying a control input signal so that the second semiconductor switching device is energized prior to the first semiconductor switching device; a third semiconductor switching device including a thyristor structure connected to a high voltage side main terminal of the second semiconductor switching device and being made conductive by a part of a main current flowing through the energized second semiconductor switching device; and a first excess voltage detection circuit stopping the first semiconductor switching device when voltage on the high voltage side main terminal is equal to or more than a predetermined voltage.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: December 10, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shinsuke Godo, Yukio Yasuda, Atsunobu Kawamoto
  • Patent number: 8570780
    Abstract: A semiconductor device includes: a parallel connection structure 1 between a first node and a second node; a first snubber device and a second snubber device having a clamp level that is the same as or higher than the output voltage of a power source section. One terminal of the first snubber device is connected through the first node to one end of the parallel connection structure, the opposite terminal of the first snubber device is connected through a third node to one terminal of the second snubber device, and the opposite terminal of the second snubber device is connected through the second node to the opposite end of the parallel connection structure. Electric power is fed back to the power source section through the second and third nodes.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: October 29, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shinsuke Godo, Atsunobu Kawamoto
  • Patent number: 8536655
    Abstract: Even in the case where negative current flows in a semiconductor device, the potential of a semiconductor substrate is prevented from becoming lower than the potential of a deep semiconductor layer which is a component of a circuit element, and a parasitic element is prevented from operating, which accordingly prevents malfunction of the semiconductor device. The semiconductor device includes the n-type semiconductor substrate, a power element, the circuit element, and an external circuit. The external circuit includes a power supply, a resistive element having one end connected to the power supply, and a diode having its anode electrode connected to the other end of the resistive element and its cathode electrode connected to the ground. To the other end of the resistive element, a semiconductor layer is connected.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: September 17, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Koji Yamamoto, Atsunobu Kawamoto
  • Publication number: 20130106499
    Abstract: Even in the case where negative current flows in a semiconductor device, the potential of a semiconductor substrate is prevented from becoming lower than the potential of a deep semiconductor layer which is a component of a circuit element, and a parasitic element is prevented from operating, which accordingly prevents malfunction of the semiconductor device. The semiconductor device includes the n-type semiconductor substrate, a power element, the circuit element, and an external circuit. The external circuit includes a power supply, a resistive element having one end connected to the power supply, and a diode having its anode electrode connected to the other end of the resistive element and its cathode electrode connected to the ground. To the other end of the resistive element, a semiconductor layer is connected.
    Type: Application
    Filed: June 27, 2012
    Publication date: May 2, 2013
    Applicant: Mitsubishi Electric Corporation
    Inventors: Koji YAMAMOTO, Atsunobu Kawamoto
  • Publication number: 20120307532
    Abstract: A semiconductor device includes: a parallel connection structure 1 between a first node and a second node; a first snubber device and a second snubber device having a clamp level that is the same as or higher than the output voltage of a power source section. One terminal of the first snubber device is connected through the first node to one end of the parallel connection structure, the opposite terminal of the first snubber device is connected through a third node to one terminal of the second snubber device, and the opposite terminal of the second snubber device is connected through the second node to the opposite end of the parallel connection structure. Electric power is fed back to the power source section through the second and third nodes.
    Type: Application
    Filed: February 15, 2012
    Publication date: December 6, 2012
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Shinsuke Godo, Atsunobu Kawamoto
  • Publication number: 20110141640
    Abstract: A power semiconductor device for an igniter comprises: a first semiconductor switching device; and an integrated circuit, wherein the integrated circuit includes: a second semiconductor switching device connected in parallel with the first semiconductor switching device and having a smaller current capacity than a current capacity of the first semiconductor switching device; a delay circuit delaying a control input signal so that the second semiconductor switching device is energized prior to the first semiconductor switching device; a third semiconductor switching device including a thyristor structure connected to a high voltage side main terminal of the second semiconductor switching device and being made conductive by a part of a main current flowing through the energized second semiconductor switching device; and a first excess voltage detection circuit stopping the first semiconductor switching device when voltage on the high voltage side main terminal is equal to or more than predetermined voltage.
    Type: Application
    Filed: September 8, 2010
    Publication date: June 16, 2011
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Shinsuke GODO, Yukio YASUDA, Atsunobu KAWAMOTO
  • Publication number: 20110134581
    Abstract: A power semiconductor device for an igniter comprises: a semiconductor switching device causing a current to flow through a primary side of an ignition coil or shutting off the current flowing through the primary side of the ignition coil; an integrated circuit driving and controlling the semiconductor switching device; and a temperature sensing element sensing temperature of the semiconductor switching device, wherein the integrated circuit including an overheat protection circuit limiting a current through the semiconductor switching device to a value lower than a current through the semiconductor switching device during normal operation, when temperature sensed by the temperature sensing element is over predetermined temperature.
    Type: Application
    Filed: September 8, 2010
    Publication date: June 9, 2011
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Shinsuke GODO, Yukio Yasuda, Atsunobu Kawamoto
  • Patent number: 7910949
    Abstract: A power semiconductor device includes a conductive board and a switching element mounted on the conductive board and electrically connected thereto. The power semiconductor device also includes an integrated circuit mounted on the conductive board at a distance from the switching element and electrically connected thereto. The switching element turns ON/OFF a connection between first and second main electrodes in response to a control signal inputted to a control electrode. The integrated circuit includes a control circuit which controls ON/OFF the switching element and a back side voltage detection element which detects a voltage of the back side of the integrated circuit.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: March 22, 2011
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yukio Yasuda, Atsunobu Kawamoto, Shinsuke Goudo
  • Patent number: 7368825
    Abstract: The present invention is directed to a power semiconductor device in which a control circuit controls a power switching element, comprising: a semiconductor substrate having a front surface and a back surface; a capacitor disposed on the front surface side of the semiconductor substrate and being comprised of a stacked structure of a first conductive layer, an insulation film and a second conductive layer; and a bonding pad which is disposed on the front surface side to the capacitor and to which a bonding wire being connected, wherein the bonding pad are arranged overlapping the capacitor.
    Type: Grant
    Filed: December 23, 2004
    Date of Patent: May 6, 2008
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Atsunobu Kawamoto
  • Publication number: 20080100147
    Abstract: The power semiconductor device of the present invention is provided with a conductive board 3, a switching element 1 mounted on the conductive board 3 and electrically connected thereto and an integrated circuit 4 mounted on the conductive board 3 at a distance from the switching element 1 and electrically connected thereto. The switching element 1 turns ON/OFF a connection between first and second main electrodes in response to a control signal inputted to a control electrode. The integrated circuit 4 has a control circuit 72 which controls ON/OFF of the switching element 1 and a back side voltage detection element 31 which detects a voltage of the back side of the integrated circuit 4.
    Type: Application
    Filed: October 10, 2007
    Publication date: May 1, 2008
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yukio Yasuda, Atsunobu Kawamoto, Shinsuke Goudo
  • Publication number: 20060138635
    Abstract: The present invention is directed to a power semiconductor device in which a control circuit controls a power switching element, comprising: a semiconductor substrate having a front surface and a back surface; a capacitor disposed on the front surface side of the semiconductor substrate and being comprised of a stacked structure of a first conductive layer, an insulation film and a second conductive layer; and a bonding pad which is disposed on the front surface side to the capacitor and to which a bonding wire being connected, wherein the bonding pad are arranged overlapping the capacitor.
    Type: Application
    Filed: December 23, 2004
    Publication date: June 29, 2006
    Inventor: Atsunobu Kawamoto
  • Patent number: 6762461
    Abstract: A protective circuit for protecting an IGBT from a stress due to application of an overvoltage which is induced by a surge such as static electricity is provided. The protective circuit allows for improvement in a voltage tolerance to a stress due to application of an overvoltage induced by a surge while ensuring a current tolerance to flow of a direct current from an external power supply when the external power supply is improperly connected in a direction contrary to a normal direction. The protective circuit includes a resistor having one end connected to a terminal for connecting to the external power supply and the other end connected to a semiconductor element, and a first zener diode including a cathode connected to the other end of the resistor. The protective circuit further includes a plurality of second zener diodes connected in series between the one end of the resistor and a generator of a constant potential such as a ground.
    Type: Grant
    Filed: December 9, 2002
    Date of Patent: July 13, 2004
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Atsunobu Kawamoto
  • Publication number: 20040012052
    Abstract: A protective circuit for protecting an IGBT from a stress due to application of an overvoltage which is induced by a surge such as static electricity is provided. The protective circuit allows for improvement in a voltage tolerance to a stress due to application of an overvoltage induced by a surge while ensuring a current tolerance to flow of a direct current from an external power supply when the external power supply is improperly connected in a direction contrary to a normal direction. The protective circuit includes a resistor having one end connected to a terminal for connecting to the external power supply and the other end connected to a semiconductor element, and a first zener diode including a cathode connected to the other end of the resistor. The protective circuit further includes a plurality of second zener diodes connected in series between the one end of the resistor and a generator of a constant potential such as a ground.
    Type: Application
    Filed: December 9, 2002
    Publication date: January 22, 2004
    Applicant: MITSUBISHI DENKI KABUSHIKI KAISHA
    Inventor: Atsunobu Kawamoto