Patents by Inventor Atsuro Iseda

Atsuro Iseda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10632521
    Abstract: The production method for producing a rifled tube, which includes a plurality of first helical ribs on its inner surface, includes: a steps of: preparing a steel tube; and producing a rifled tube by performing cold drawing on a steel tube by using a plug which includes a plurality of second helical ribs, the plug satisfying Formulae and: 0.08 <W×(A?B)×N/(2?×A)<0.26??(1) 0.83<S×(A?B)×N/(2×M)<2.0??(2) where, W is a width of a groove bottom surface of the helical groove; A is a maximum diameter of the plug; B is a minimum diameter of the plug; N is a number of the second helical ribs; S is the width of the groove bottom surface; and M is a pitch of adjacent second helical ribs.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: April 28, 2020
    Assignees: NIPPON STEEL CORPORATION, MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Takashi Nakashima, Atsuro Iseda, Takeshi Miki, Shunichi Otsuka
  • Patent number: 10519533
    Abstract: A high Cr austenitic stainless steel with a chemical composition consisting of in terms of % by mass, 0.03 to 0.12% of C, 0.10 to 1.00% of Si, 0.10 to 3.00% of Mn, 0.030% or less of P, 0.020% or less of S, 21.50 to 28.00% of Cr, more than 26.00 and not more than 35.00% of Ni, more than 2.00 and not more than 5.00% of W, 0.80% or less of Co, 0.01 to 0.70% of V, 0.15 to 1.00% of Nb, 0.001 to 0.040% of Al, 0.0001 to 0.0100% of B, 0.010 to 0.400% of N, 0.001 to 0.200% of Zr, 0.001 to 0.200% of Nd, 0.001 to 0.200% of Ta, 0.020 to 0.200% of Ta+0.8Nd+0.5Zr, 0.025% or less of Ti+Sn+Sb+Pb+As+Bi, 0.0090% or less of O, and a remainder consisting of Fe and impurities.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: December 31, 2019
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Atsuro Iseda, Hiroyuki Semba, Hirokazu Okada, Hiroyuki Hirata, Toshihide Ono, Katsuki Tanaka, Tomoaki Hamaguchi, Kana Jotoku
  • Publication number: 20180216215
    Abstract: An austenitic heat-resistant alloy has a chemical composition of, in mass %: 0.04 to 0.14% C; 0.05 to 1% Si; 0.5 to 2.5% Mn; up to 0.03% P; less than 0.001% S; 23 to 32% Ni; 20 to 25% Cr 1 to 5% W; 0.1 to 0.6% Nb; 0.1 to 0.6% V; 0.1 to 0.3% N; 0.0005 to 0.01% B; 0.001 to 0.02% Sn; up to 0.03% AI; up to 0.02% 0; 0 to 0.5% Ti; 0 to 2% Co; 0 to 4% Cu; 0 to 4% Mo; 0 to 0.02% Ca; 0 to 0.02% Mg; 0 to 0.2% REM; and the balance being Fe and impurities. The alloy microstructure has a grain size number in accordance with ASTM E112 of 2.0 or more and less than 7.0.
    Type: Application
    Filed: June 2, 2016
    Publication date: August 2, 2018
    Inventors: Hiroyuki HIRATA, Hiroyuki SEMBA, Kana JOTOKU, Atsuro ISEDA, Toshihide ONO, Katsuki TANAKA
  • Publication number: 20180179619
    Abstract: An austenitic heat-resistant alloy is provided that provides good crack resistance and high-temperature strength in a stable manner. The austenitic heat-resistant alloy has a chemical composition of, in mass %: 0.04 to 0.15% C; 0.05 to 1% Si; 0.3 to 2.5% Mn; up to 0.04% P; up to 0.0015% S; 2 to 4% Cu: 11 to 16% Ni; 16 to 20% Cr; 2 to 5 % W; 0.1 to 0.8% Nb; 0.05 to 0.35% Ti; 0.001 to 0.015% N; 0.0005 to 0.01% B; up to 0.03% Al; up to 0.02 % O; 0 to 0.02 % Sn; 0 to 0.5 % V; 0 to 2 % Co; 0 to 5% Mo; 0 to 0.02% Ca; 0 to 0.02% Mg; 0 to 0.2% REM; and the balance being Fe and impurities, the alloy having a microstructure with a grain size represented by a grain size number in accordance with ASTM E112 of 2.0 or more and less than 7.0.
    Type: Application
    Filed: June 2, 2016
    Publication date: June 28, 2018
    Inventors: Hiroyuki Hirata, Hirokazu Okada, Kana Jotoku, Atsuro Iseda, Toshihide Ono, Katsuki Tanaka
  • Publication number: 20180142334
    Abstract: A high Cr austenitic stainless steel with a chemical composition consisting of in terms of % by mass, 0.03 to 0.12% of C, 0.10 to 1.00% of Si, 0.10 to 3.00% of Mn, 0.030% or less of P, 0.020% or less of S, 21.50 to 28.00% of Cr, more than 26.00 and not more than 35.00% of Ni, more than 2.00 and not more than 5.00% of W, 0.80% or less of Co, 0.01 to 0.70% of V, 0.15 to 1.00% of Nb, 0.001 to 0.040% of Al, 0.0001 to 0.0100% of B, 0.010 to 0.400% of N, 0.001 to 0.200% of Zr, 0.001 to 0.200% of Nd, 0.001 to 0.200% of Ta, 0.020 to 0.200% of Ta+0.8Nd+0.5Zr, 0.025% or less of Ti+Sn+Sb+Pb+As+Bi, 0.0090% or less of O, and a remainder consisting of Fe and impurities.
    Type: Application
    Filed: June 3, 2016
    Publication date: May 24, 2018
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Atsuro ISEDA, Hiroyuki SEMBA, Hirokazu OKADA, Hiroyuki HIRATA, Toshihide ONO, Katsuki TANAKA, Tomoaki HAMAGUCHI, Kana JOTOKU
  • Publication number: 20170320124
    Abstract: The production method for producing a rifled tube, which includes a plurality of first helical ribs on its inner surface, includes: a steps of: preparing a steel tube; and producing a rifled tube by performing cold drawing on a steel tube by using a plug which includes a plurality of second helical ribs, the plug satisfying Formulae and: 0.08 <W×(A?B)×N/(2?×A)<0.26??(1) 0.83<S×(A?B)×N/(2×M)<2.0??(2) where, W is a width of a groove bottom surface of the helical groove; A is a maximum diameter of the plug; B is a minimum diameter of the plug; N is a number of the second helical ribs; S is the width of the groove bottom surface; and M is a pitch of adjacent second helical ribs.
    Type: Application
    Filed: November 24, 2015
    Publication date: November 9, 2017
    Applicants: Nippon Steel & Sumitomo Metal Corporation, Mitsubishi Hitachi Power Systems, Ltd.
    Inventors: Takashi NAKASHIMA, Atsuro ISEDA, Takeshi MIKI, Shunich OTSUKU
  • Publication number: 20170268085
    Abstract: An austenitic stainless steel with a chemical composition including in terms of mass %: 0.05 to 0.13% of C, 0.10 to 1.00% of Si, 0.10 to 3.00% of Mn, 0.040% or less of P, 0.020% or less of S, 17.00 to 19.00% of Cr, 12.00 to 15.00% of Ni, 2.00 to 4.00% of Cu, 0.01 to 2.00% of Mo, 2.00 to 5.00% of W, 2.50 to 5.00% of 2Mo+W, 0.01 to 0.40% of V, 0.05 to 0.50% of Ti, 0.15 to 0.70% of Nb, 0.001 to 0.040% of Al, 0.0010 to 0.0100% of B, 0.0010 to 0.0100% of N, 0.001 to 0.20% of Nd, 0.002% or less of Zr, 0.001% or less of Bi, 0.010% or less of Sn, 0.010% or less of Sb, 0.001% or less of Pb, 0.001% or less of As, 0.020% or less of Zr+Bi+Sn+Sb+Pb+As, 0.0090% or less of O, and a remainder including Fe and impurities.
    Type: Application
    Filed: June 3, 2016
    Publication date: September 21, 2017
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Atsuro ISEDA, Hirokazu OKADA, Hiroyuki SEMBA, Hiroyuki HIRATA, Tomoaki HAMAGUCHI, Kana JOTOKU, Toshihide ONO, Katsuki TANAKA
  • Patent number: 9328403
    Abstract: A Ni-based heat resistant alloy as pipe, plate, rod, forgings and the like consists of C?0.15%, Si?2%, Mn?3%, P?0.03%, S?0.01%, Cr: 15% or more and less than 28%, Mo: 3 to 15%, Co: more than 5% and not more than 25%, Al: 0.2 to 2%, Ti: 0.2% to 3%, Nd: fn to 0.08%, and O?0.4Nd, further containing, as necessary, at least one kind of Nb, W, B, Zr, Hf, Mg, Ca, Y, La, Ce, Ta, Re and Fe of specific amounts, the balance being Ni and impurities, wherein, fn=1.7×10?5d+0.05{(Al/26.98)+(Ti/47.88)+(Nb/92.91)}. In the formula, d denotes an average grain size (?m), and each element symbol denotes the content (mass %) of that element. If the alloy contains W, Mo+(W/2)?15% holds. The alloy has improved ductility after long-term use at high temperatures, and cracking due to welding can be avoided.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: May 3, 2016
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hiroyuki Semba, Hirokazu Okada, Hiroyuki Hirata, Mitsuru Yoshizawa, Atsuro Iseda
  • Patent number: 9153348
    Abstract: After an inner wall tube, made of steel or alloy containing not less than 2% of Cr, whose outer surface thereof is machined and/or ground to a thickness of 0.1 mm or more including the scale layer, is inserted into an outer wall tube, made of ferritic steel containing not less than 2% of Cr, in which an oxide scale layer containing Cr and having a thickness of 10 to 30 ?m is formed in the inner surface thereof, cold working at an outside diameter reduction rate of 5 to 30% is performed. Similarly cold worked after an inner wall tube having an oxide scale layer on the outer surface thereof, is inserted into an outer wall tube whose inner surface is machined and ground. A double-walled tube made has a uniform gap and an excellent thermal conductivity, and is suitable as materials for SG tubes of future FBR.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: October 6, 2015
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Atsuro Iseda, Takashi Nakashima, Tetsuo Yokoyama, Tadashi Kawakami, Takuya Hanada
  • Publication number: 20140234155
    Abstract: A Ni-based heat resistant alloy as pipe, plate, rod, forgings and the like consists of C?0.15%, Si?2%, Mn?3%, P?0.03%, S?0.01%, Cr: 15% or more and less than 28%, Mo: 3 to 15%, Co: more than 5% and not more than 25%, Al: 0.2 to 2%, Ti: 0.2% to 3%, Nd: fn to 0.08%, and O?0.4Nd, further containing, as necessary, at least one kind of Nb, W, B, Zr, Hf, Mg, Ca, Y, La, Ce, Ta, Re and Fe of specific amounts, the balance being Ni and impurities, wherein, fn=1.7×10?5d+0.05{(Al/26.98)+(Ti/47.88)+(Nb/92.91)}. In the formula, d denotes an average grain size (?m), and each element symbol denotes the content (mass %) of that element. If the alloy contains W, Mo+(W/2)?15% holds. The alloy has improved ductility after long-term use at high temperatures, and cracking due to welding can be avoided.
    Type: Application
    Filed: July 31, 2012
    Publication date: August 21, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hiroyuki Semba, Hirokazu Okada, Hiroyuki Hirata, Mitsuru Yoshizawa, Atsuro Iseda
  • Patent number: 8808473
    Abstract: An austenitic heat resistant alloy includes, by mass percent, C: 0.15% or less, Si: 2% or less, Mn: 3% or less, Ni: 40 to 60%, Co: 10.14 to 25%, Cr: 15% or more and less than 28%, either one or both of Mo: 12% or less and W: less than 0.05%, the total content thereof being 0.1 to 12%, Nd: 0.001 to 0.1%, B: 0.0005 to 0.006%, N: 0.03% or less, O: 0.03% or less, at least one selected from Al: 1.36% or less, Ti: 3% or less, and Nb: 3% or less, and the balance being Fe and impurities. The contents of P and S in the impurities are P: 0.03% or less and S: 0.01% or less. The alloy satisfies 1?4×Al+2×Ti+Nb?12 and P+0.2×Cr×B?0.035, where an element in the Formulas represents the content by mass percent.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: August 19, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Hiroyuki Hirata, Hirokazu Okada, Hiroyuki Semba, Kazuhiro Ogawa, Atsuro Iseda, Mitsuru Yoshizawa
  • Patent number: 8801876
    Abstract: [Problem to be Solved] A Ni-based alloy product consisting of, by mass percent, C: 0.03 to 0.10%, Si: 0.05 to 1.0%, Mn: 0.1 to 1.5%, Sol.Al: 0.0005 to 0.04%, Fe: 20 to 30%, Cr: not less than 21.0% and less than 25.0%, W: exceeding 6.0% and not more than 9.0%, Ti: 0.05 to 0.2%, Nb: 0.05 to 0.35%, and B: 0.0005 to 0.006%, the balance being Ni and impurities, the impurities being P: 0.03% or less, S: 0.01% or less, N: less than 0.010%, Mo: less than 0.5%, and Co: 0.8% or less, wherein a value of effective B (Beff) defined by the formula, Beff (%)=B?(11/14)×N+(11/48)×Ti, is 0.0050 to 0.0300%, and the rupture elongation in a tensile test at 700° C. and at a strain rate of 10?6/sec is 20% or more. This alloy may contain one or more kinds of Cu, Ta, Zr, Mg, Ca, REM, and Pd.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: August 12, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Atsuro Iseda, Hiroyuki Hirata, Hirokazu Okada, Hiroyuki Semba
  • Publication number: 20130130058
    Abstract: To provide an austenitic stainless steel which has an excellent high-temperature corrosion thermal fatigue cracking resistance. An austenitic stainless steel containing, by mass %, Cr: 15.0 to 23.0%, and Ni: 6.0 to 20.0%, wherein a near-surface portion is covered with a worked layer with high energy density having an average thickness of 5 to 30 ?m.
    Type: Application
    Filed: March 26, 2012
    Publication date: May 23, 2013
    Applicant: SUMITOMO METAL INDUSTRIES, LTD.
    Inventors: Atsuro ISEDA, Yoshitaka Nishiyama, Masahiro Seto, Satomi Yamamoto, Hiroyuki Hirata, Yasutaka Noguchi, Mitsuru Yoshizawa, Hiroshi Matsuo
  • Publication number: 20130070889
    Abstract: After an inner wall tube, made of steel or alloy containing not less than 2% of Cr, whose outer surface thereof is machined and/or ground to a thickness of 0.1 mm or more including the scale layer, is inserted into an outer wall tube, made of ferritic steel containing not less than 2% of Cr, in which an oxide scale layer containing Cr and having a thickness of 10 to 30 ?m is formed in the inner surface thereof , cold working at an outside diameter reduction rate of 5 to 30% is performed. Similarly cold worked after an inner wall tube having an oxide scale layer on the outer surface thereof, is inserted into an outer wall tube whose inner surface is machined and ground. A double-walled tube made has a uniform gap and an excellent thermal conductivity, and is suitable as materials for SG tubes of future FBR.
    Type: Application
    Filed: May 2, 2011
    Publication date: March 21, 2013
    Inventors: Atsuro Iseda, Takashi Nakashima, Tetsuo Yokoyama, Tadashi Kawakami, Takuya Hanada
  • Patent number: 8313591
    Abstract: An austenitic heat resistant alloy, which contains, by mass percent, C?0.15%, Si?2%, Mn?3%, Ni: 40 to 80%, Cr: 15 to 40%, W and Mo: 1 to 15% in total content, Ti?3%, Al?3%, N?0.03%, O?0.03%, with the balance being Fe and impurities, and among the impurities P?0.04%, S?0.03%, Sn?0.1%, As?0.01%, Zn?0.01%, Pb?0.01% and Sb?0.01%, and satisfies the conditions [P1=S+{(P+Sn)/2}+{(As+Zn+Pb+Sb)/5}?0.050], [0.2?P2=Ti+2Al?7.5?10×P1], [P2?9.0?100×O] and [N?0.002×P2+0.019] can prevent both the liquation crack in the HAZ and the brittle crack in the HAZ and also can prevent defects due to welding fabricability, which occur during welding fabrication, and moreover has excellent creep strength at high temperatures. Therefore, the alloy can be used suitably as a material for constructing high temperature machines and equipment, such as power generating boilers, plants for the chemical industry and so on.
    Type: Grant
    Filed: December 24, 2009
    Date of Patent: November 20, 2012
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Hiroyuki Hirata, Atsuro Iseda, Hirokazu Okada, Hiroyuki Semba, Kaori Kawano, Osamu Miyahara
  • Publication number: 20120288400
    Abstract: An austenitic heat resistant alloy consisting of, by mass percent, C: 0.15% or less, Si: 2% or less, Mn: 3% or less, Ni: 40 to 60%, Co: 0.03 to 25%, Cr: 15% or more and less than 28%, either one or both of Mo: 12% or less and W: less than 4%, the total content thereof being 0.1 to 12%, Nd: 0.001 to 0.1%, B: 0.0005 to 0.006%, N: 0.03% or less, O: 0.03% or less, at least one selected from Al: 3% or less, Ti: 3% or less, and Nb: 3% or less, the balance being Fe and impurities. The contents of P and S in the impurities being P: 0.03% or less and S: 0.01% or less. The alloy satisfies 1?4×Al+2×Ti+Nb?12 and P+0.2×Cr×B?0.035, is excellent in weld crack resistance and toughness of HAZ, and is further excellent in creep strength at high temperatures.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 15, 2012
    Applicant: SUMITOMO METAL INDUSTRIES., LTD.
    Inventors: Hiroyuki Hirata, Hirokazu Okada, Hiroyuki Semba, Kazuhiro Ogawa, Atsuro Iseda, Mitsuru Yoshizawa
  • Patent number: 8293169
    Abstract: A high strength, ductile, and tough Ni-base heat resistant alloy comprises by mass percent, C: 0.1% or less, Si: 1% or less, Mn: 1% or less, Cr: not less than 15% to less than 28%, Fe: 15% or less, W: more than 5% to not more than 20%, Al: more than 0.5% to not more than 2%, Ti: more than 0.5% to not more than 2%, Nd: 0.001 to 0.1% and B: 0.0005 to 0.01%, with the balance being Ni and impurities. Impurity contents of P, S, Sn, Pb, Sb, Zn and As are P: 0.03% or less, S: 0.01% or less, Sn: 0.020% or less, Pb: 0.010% or less, Sb: 0.005% or less, Zn: 0.005% or less and As: 0.005% or less, and formulas of [0.015?Nd+13.4×B?0.13], [Sn+Pb?0.025] and [Sb+Zn +As?0.010] are met.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: October 23, 2012
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Hiroyuki Semba, Atsuro Iseda, Hiroyuki Hirata, Kaori Kawano, Masaaki Igarashi, Osamu Miyahara
  • Publication number: 20120168038
    Abstract: [Problem to be Solved] A Ni-based alloy product consisting of, by mass percent, C: 0.03 to 0.10%, Si: 0.05 to 1.0%, Mn: 0.1 to 1.5%, Sol.Al: 0.0005 to 0.04%, Fe: 20 to 30%, Cr: not less than 21.0% and less than 25.0%, W: exceeding 6.0% and not more than 9.0%, Ti: 0.05 to 0.2%, Nb: 0.05 to 0.35%, and B: 0.0005 to 0.006%, the balance being Ni and impurities, the impurities being P: 0.03% or less, S: 0.01% or less, N: less than 0.010%, Mo: less than 0.5%, and Co: 0.8% or less, wherein a value of effective B (Beff) defined by the formula, Beff (%)=B?(11/14)×N+(11/48)×Ti, is 0.0050 to 0.0300%, and the rupture elongation in a tensile test at 700° C. and at a strain rate of 10?6/sec is 20% or more. This alloy may contain one or more kinds of Cu, Ta, Zr, Mg, Ca, REM, and Pd.
    Type: Application
    Filed: March 15, 2012
    Publication date: July 5, 2012
    Applicant: SUMITOMO METAL INDUSTRIES, LTD.
    Inventors: Atsuro ISEDA, Hiroyuki HIRATA, Hirokazu OKADA, Hiroyuki SEMBA
  • Publication number: 20110223055
    Abstract: A Ni-base heat resistant alloy, which comprises by mass percent, C: 0.1% or less, Si: 1% or less, Mn: 1% or less, Cr: not less than 15% to less than 28%, Fe: 15% or less, W: more than 5% to not more than 20%, Al: more than 0.5% to not more than 2%, Ti: more than 0.5% to not more than 2%, Nd: 0.001 to 0.1% and B: 0.0005 to 0.01%, with the balance being Ni and impurities, in which the contents of P, S, Sn, Pb, Sb, Zn and As among the impurities are P: 0.03% or less, S: 0.01% or less, Sn: 0.020% or less, Pb: 0.010% or less, Sb: 0.005% or less, Zn: 0.005% or less and As: 0.005% or less, and further satisfies the formulas of [0.015?Nd+13.4×B?0.13], [Sn+Pb?0.025] and [Sb+Zn+As?0.010] is an alloy in which much higher strength than the conventional Ni-base heat resistant alloy can be achieved, the ductility and toughness after a long period of use at a high temperature are remarkably improved, and moreover the zero ductility temperature and the hot workability are also further improved.
    Type: Application
    Filed: March 24, 2011
    Publication date: September 15, 2011
    Applicant: SUMITOMO METAL INDUSTRIES, LTD.
    Inventors: Hiroyuki SEMBA, Atsuro ISEDA, Hiroyuki HIRATA, Kaori KAWANO, Masaaki IGARASHI, Osamu MIYAHARA
  • Publication number: 20100166594
    Abstract: An austenitic heat resistant alloy, which comprises, by mass percent, C?0.15%, Si?2%, Mn?3%, Ni: 40 to 80%, Cr: 15 to 40%, W and Mo: 1 to 15% in total content, Ti?3%, Al?3%, N?0.03%, O?0.03%, with the balance being Fe and impurities, and among the impurities P?0.04%, S?0.03%, Sn?0.1%, As?0.01%, Zn?0.01%, Pb?0.01% and Sb?0.01%, and satisfies the conditions [P1=S+{(P+Sn)/2}+{(As+Zn+Pb+Sb)/5}?0.050], [0.2?P2=Ti+2Al?7.5?10×P1], [P2?9.0?100×O] and [N?0.002×P2+0.019] can prevent both the liquation crack in the HAZ and the brittle crack in the HAZ and also can prevent defects due to welding fabricability, which occur during welding fabrication, and moreover has excellent creep strength at high temperatures. Therefore, the alloy can be used suitably as a material for constructing high temperature machines and equipment, such as power generating boilers, plants for the chemical industry and so on.
    Type: Application
    Filed: December 24, 2009
    Publication date: July 1, 2010
    Inventors: Hiroyuki Hirata, Atsuro Iseda, Hirokazu Okada, Hiroyuki Semba, Kaori Kawano, Osamu Miyahara