Patents by Inventor Atsuro Nagumo

Atsuro Nagumo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10376864
    Abstract: This invention provides a carrier for a synthesis gas production catalyst that can suppress carbon depositions and allows to efficiently produce synthesis gas on a stable basis for a long duration of time when producing synthesis gas by carbon dioxide reforming. It is a carrier to be used for producing synthesis gas containing carbon monoxide and hydrogen from source gas containing methane-containing light hydrocarbons and carbon dioxide. The carrier contains magnesium oxide grains and calcium oxide existing on the surfaces of magnesium oxide grains. The calcium oxide content thereof is between 0.005 mass % and 1.5 mass % in terms of Ca.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: August 13, 2019
    Assignee: CHIYODA CORPORATION
    Inventors: Fuyuki Yagi, Atsuro Nagumo, Ryuichi Kanai
  • Publication number: 20190030515
    Abstract: This invention provides a carrier for a synthesis gas production catalyst that can suppress carbon depositions and allows to efficiently produce synthesis gas on a stable basis for a long duration of time when producing synthesis gas by carbon dioxide reforming. It is a carrier to be used for producing synthesis gas containing carbon monoxide and hydrogen from source gas containing methane-containing light hydrocarbons and carbon dioxide. The carrier contains magnesium oxide grains and calcium oxide existing on the surfaces of magnesium oxide grains. The calcium oxide content thereof is between 0.005 mass % and 1.5 mass % in terms of Ca.
    Type: Application
    Filed: June 5, 2017
    Publication date: January 31, 2019
    Applicant: CHIYODA CORPORATION
    Inventors: Fuyuki Yagi, Atsuro Nagumo, Ryuichi Kanai
  • Patent number: 9828309
    Abstract: Method for producing monocyclic aromatic hydrocarbons includes a cracking and reforming reaction step of obtaining products containing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms and a heavy fraction having 9 or more carbon atoms by bringing the feedstock oil into contact with a catalyst for producing monocyclic aromatic hydrocarbons containing crystalline aluminosilicate to cause a reaction, a catalyst separation step of separating and removing the catalyst for producing monocyclic aromatic hydrocarbons together with tricyclic aromatic hydrocarbons contained in the products from a mixture of the products and a small amount of the catalyst for producing monocyclic aromatic hydrocarbons carried by the products, both of which are derived in the cracking and reforming reaction step, and a purification and recovery step of purifying and recovering the monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms which are separated from the products formed in the cracking and reforming reaction step
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: November 28, 2017
    Assignees: JX Nippon Oil & Energy Corporation, CHIYODA CORPORATION
    Inventors: Shinichiro Yanagawa, Yuichiro Fujiyama, Yasuyuki Iwasa, Ryoji Ida, Masahide Kobayashi, Susumu Yasui, Yoshishige Sugi, Atsushi Fukui, Atsuro Nagumo
  • Patent number: 9656232
    Abstract: A method for producing aromatic hydrocarbons, the method including: (a) bringing a feedstock oil such as an LCO into contact with an aromatic production catalyst to obtain a reaction product containing aromatic hydrocarbons, (b) separating the reaction product into a tower top fraction and a tower bottom fraction using a distillation tower, (c) separating the tower top fraction into a crude aromatic fraction containing an LPG fraction, and an off-gas containing hydrogen, (d) separating the crude aromatic fraction containing an LPG fraction into an LPG fraction and a crude aromatic fraction, (e) separating the off-gas containing hydrogen into hydrogen and an off-gas, and (f) using the hydrogen obtained in step (e) to hydrotreat the crude aromatic fraction, thereby obtaining an aromatic fraction.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: May 23, 2017
    Assignees: CHIYODA CORPORATION, JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Hideki Minami, Yoshishige Sugi, Atsushi Fukui, Atsuro Nagumo, Susumu Yasui, Shinichiro Yanagawa
  • Patent number: 9388096
    Abstract: A producing method of monocyclic aromatic hydrocarbons in which reaction products including monocyclic aromatic hydrocarbons are produced by bringing an oil feedstock and an aromatic production catalyst into contact with each other, the oil feedstock having a 10 volume % distillation temperature of more than or equal to 140° C. and a 90 volume % distillation temperature of less than or equal to 380° C., the method including the steps of: introducing the oil feedstock into a fluidized-bed reaction apparatus housing the aromatic production catalyst; bringing the oil feedstock and the aromatic production catalyst into contact with each other in the fluidized-bed reaction apparatus; and introducing steam into the fluidized-bed reaction apparatus based on the introducing amount of the oil feedstock per hour.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: July 12, 2016
    Assignees: JX Nippon Oil & Energy Corporation, CHIYODA CORPORATION
    Inventors: Shinichiro Yanagawa, Yasuyuki Iwasa, Susumu Yasui, Yoshishige Sugi, Atsushi Fukui, Atsuro Nagumo, Osamu Hirohata
  • Patent number: 9382173
    Abstract: Provided is a method for producing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms, the method including a cracking reforming reaction step of bringing feedstock oil into contact with a catalyst to effect a reaction; a step of purifying and recovering monocyclic aromatic hydrocarbons separated from the reaction step; and (1) a step of hydrogenating a heavy fraction separated from the reaction step; a dilution step of returning a portion of the hydrogenation product as a diluent oil to the hydrogenation step; and a step of returning the hydrogenation product to the reaction step; or (2) a step of adding a diluent to the heavy fraction separated from the reaction step; a step of hydrogenating the mixture; and a step of returning the hydrogenation product to the reaction step.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: July 5, 2016
    Assignees: JX Nippon Oil & Energy Corporation, CHIYODA CORPORATION
    Inventors: Shinichiro Yanagawa, Ryoji Ida, Yasuyuki Iwasa, Masahide Kobayashi, Susumu Yasui, Yoshishige Sugi, Atsushi Fukui, Atsuro Nagumo
  • Patent number: 9255042
    Abstract: A producing method of monocyclic aromatic hydrocarbons from the oil feedstock having a 10 volume % distillation temperature of more than or equal to 140° C. and a 90 volume % distillation temperature of less than or equal to 380° C. by bringing into contact with an aromatic production catalyst includes the steps of: introducing the oil feedstock into a cracking and reforming reaction apparatus housing the aromatic production catalyst; bringing the oil feedstock and the aromatic production catalyst into contact with each other at the inside of the cracking and reforming reaction apparatus; heating the oil feedstock in advance before introducing the oil feedstock into the cracking and reforming reaction apparatus and forming a two-phase gas-liquid stream; separating the two-phase gas-liquid stream into a gas fraction and a liquid fraction; and introducing the gas fraction and the liquid fraction at different positions of the cracking and reforming reaction apparatus.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: February 9, 2016
    Assignees: JX Nippon Oil & Energy Corporation, CHIYODA CORPORATION
    Inventors: Shinichiro Yanagawa, Yasuyuki Iwasa, Susumu Yasui, Yoshishige Sugi, Atsushi Fukui, Atsuro Nagumo
  • Patent number: 9233892
    Abstract: A method for producing monocyclic aromatic hydrocarbons includes a step of introducing a feedstock oil into a cracking/reforming reactor, bringing the feedstock oil into contact with a catalyst, and causing the feedstock oil to react, a step of purifying and recovering the monocyclic aromatic hydrocarbons separated from the product produced in the reaction step, a step of hydrogenating a heavy fraction separated from the product, and a recycling step of returning a hydrogenation reactant of the heavy fraction to the cracking/reforming reaction step. In the recycling step, the hydrogenation reactant is introduced at a location different from an introduction location of the feedstock oil into the reactor so that a time during which the hydrogenation reactant is in contact with the catalyst in the reactor becomes shorter than a time during which the feedstock oil is in contact with the catalyst in the reactor.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: January 12, 2016
    Assignees: JX Nippon Oil & Energy Corporation, CHIYODA CORPORATION
    Inventors: Shinichiro Yanagawa, Masahide Kobayashi, Ryoji Ida, Susumu Yasui, Yoshishige Sugi, Atsushi Fukui, Atsuro Nagumo
  • Publication number: 20140200378
    Abstract: Method for producing monocyclic aromatic hydrocarbons includes a cracking and reforming reaction step of obtaining products containing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms and a heavy fraction having 9 or more carbon atoms by bringing the feedstock oil into contact with a catalyst for producing monocyclic aromatic hydrocarbons containing crystalline aluminosilicate to cause a reaction, a catalyst separation step of separating and removing the catalyst for producing monocyclic aromatic hydrocarbons together with tricyclic aromatic hydrocarbons contained in the products from a mixture of the products and a small amount of the catalyst for producing monocyclic aromatic hydrocarbons carried by the products, both of which are derived in the cracking and reforming reaction step, and a purification and recovery step of purifying and recovering the monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms which are separated from the products formed in the cracking and reforming reaction step
    Type: Application
    Filed: May 24, 2012
    Publication date: July 17, 2014
    Applicants: CHIYODA CORPORATION, JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Shinichiro Yanagawa, Yuichiro Fujiyama, Yasuyuki Iwasa, Ryoji Ida, Masahide Kobayashi, Susumu Yasui, Yoshishige Sugi, Atsushi Fukui, Atsuro Nagumo
  • Publication number: 20140179968
    Abstract: A producing method of monocyclic aromatic hydrocarbons in which reaction products including monocyclic aromatic hydrocarbons are produced by bringing an oil feedstock and an aromatic production catalyst into contact with each other, the oil feedstock having a 10 volume % distillation temperature of more than or equal to 140° C. and a 90 volume % distillation temperature of less than or equal to 380° C., the method including the steps of: introducing the oil feedstock into a fluidized-bed reaction apparatus housing the aromatic production catalyst; bringing the oil feedstock and the aromatic production catalyst into contact with each other in the fluidized-bed reaction apparatus; and introducing steam into the fluidized-bed reaction apparatus based on the introducing amount of the oil feedstock per hour.
    Type: Application
    Filed: May 24, 2012
    Publication date: June 26, 2014
    Applicants: CHIYODA CORPORATION, JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Shinichiro Yanagawa, Yasuyuki Iwasa, Susumu Yasui, Yoshishige Sugi, Atsushi Fukui, Atsuro Nagumo, Osamu Hirohata
  • Publication number: 20140163275
    Abstract: A producing method of monocyclic aromatic hydrocarbons from the oil feedstock having a 10 volume % distillation temperature of more than or equal to 140° C. and a 90 volume % distillation temperature of less than or equal to 380° C. by bringing into contact with an aromatic production catalyst includes the steps of: introducing the oil feedstock into a cracking and reforming reaction apparatus housing the aromatic production catalyst; bringing the oil feedstock and the aromatic production catalyst into contact with each other at the inside of the cracking and reforming reaction apparatus; heating the oil feedstock in advance before introducing the oil feedstock into the cracking and reforming reaction apparatus and forming a two-phase gas-liquid stream; separating the two-phase gas-liquid stream into a gas fraction and a liquid fraction; and introducing the gas fraction and the liquid fraction at different positions of the cracking and reforming reaction apparatus.
    Type: Application
    Filed: May 24, 2012
    Publication date: June 12, 2014
    Applicants: CHIYODA CORPORATION, JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Shinichiro Yanagawa, Yasuyuki Iwasa, Susumu Yasui, Yoshishige Sugi, Atsushi Fukui, Atsuro Nagumo
  • Publication number: 20140066672
    Abstract: Provided is a method for producing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms, the method including a cracking reforming reaction step of bringing feedstock oil into contact with a catalyst to effect a reaction; a step of purifying and recovering monocyclic aromatic hydrocarbons separated from the reaction step; and (1) a step of hydrogenating a heavy fraction separated from the reaction step; a dilution step of returning a portion of the hydrogenation product as a diluent oil to the hydrogenation step; and a step of returning the hydrogenation product to the reaction step; or (2) a step of adding a diluent to the heavy fraction separated from the reaction step; a step of hydrogenating the mixture; and a step of returning the hydrogenation product to the reaction step.
    Type: Application
    Filed: March 23, 2012
    Publication date: March 6, 2014
    Applicants: CHIYODA CORPORATION, JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Shinichiro Yanagawa, Ryoji Ida, Yasuyuki Iwasa, Masahide Kobayashi, Susumu Yasui, Yoshishige Sugi, Atsushi Fukui, Atsuro Nagumo
  • Publication number: 20140018585
    Abstract: A method for producing monocyclic aromatic hydrocarbons includes a step of introducing a feedstock oil into a cracking/reforming reactor, bringing the feedstock oil into contact with a catalyst, and causing the feedstock oil to react, a step of purifying and recovering the monocyclic aromatic hydrocarbons separated from the product produced in the reaction step, a step of hydrogenating a heavy fraction separated from the product, and a recycling step of returning a hydrogenation reactant of the heavy fraction to the cracking/reforming reaction step. In the recycling step, the hydrogenation reactant is introduced at a location different from an introduction location of the feedstock oil into the reactor so that a time during which the hydrogenation reactant is in contact with the catalyst in the reactor becomes shorter than a time during which the feedstock oil is in contact with the catalyst in the reactor.
    Type: Application
    Filed: March 23, 2012
    Publication date: January 16, 2014
    Applicants: CHIYODA CORPORATION, JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Shinichiro Yanagawa, Masahide Kobayashi, Ryoji Ida, Susumu Yasui, Yoshishige Sugi, Atsushi Fukui, Atsuro Nagumo
  • Publication number: 20130085310
    Abstract: A method for producing aromatic hydrocarbons, the method including: (a) bringing a feedstock oil such as an LCO into contact with an aromatic production catalyst to obtain a reaction product containing aromatic hydrocarbons, (b) separating the reaction product into a tower top fraction and a tower bottom fraction using a distillation tower, (c) separating the tower top fraction into a crude aromatic fraction containing an LPG fraction, and an off-gas containing hydrogen, (d) separating the crude aromatic fraction containing an LPG fraction into an LPG fraction and a crude aromatic fraction, (e) separating the off-gas containing hydrogen into hydrogen and an off-gas, and (f) using the hydrogen obtained in step (e) to hydrotreat the crude aromatic fraction, thereby obtaining an aromatic fraction.
    Type: Application
    Filed: March 25, 2011
    Publication date: April 4, 2013
    Applicants: JX NIPPON OIL & ENERGY CORPORATION, CHIYODA CORPORATION
    Inventors: Hideki Minami, Yoshishige Sugi, Atsushi Fukui, Atsuro Nagumo, Susumu Yasui, Shinichiro Yanagawa
  • Publication number: 20120012504
    Abstract: A method for producing aromatic hydrocarbons in which at least one feedstock oil selected from the group consisting of LCO produced from an FCC apparatus, hydrotreated LCO, naphtha and straight-run gas oil is brought into contact with a reforming catalyst inside a fluidized bed reactor, wherein the method includes transporting a reforming catalyst that has been extracted from the fluidized bed reactor to a heating tank, heating the reforming catalyst in the heating tank to a temperature at least as high as the reaction temperature inside the fluidized bed reactor, and following heating, transporting the heated reforming catalyst to the fluidized bed reactor.
    Type: Application
    Filed: March 26, 2010
    Publication date: January 19, 2012
    Inventors: Hideki Minami, Yoshishige Sugi, Atsushi Fukui, Atsuro Nagumo, Shinichiro Yanagawa, Kazuaki Hayasaka
  • Patent number: 7888282
    Abstract: A catalyst for manufacturing synthesis gas has a carrier and a Group VIII metal carried by the carrier. The carrier contains a first ingredient, a second ingredient and a third ingredient. The first ingredient is an oxide of at least an alkaline earth metal selected from the group of magnesium, calcium, strontium and barium. The second ingredient is an oxide of at least an element selected from the group of scandium, yttrium and lanthanoids. The third ingredient is zirconia or a substance containing zirconia as principal ingredient and has a solid electrolytic property. The carrier may be formed by forming an overcoat film on a substrate by coating. Then, the overcoat film contains the above three ingredients. A catalyst according to the invention can remarkably reduce the dimensions of the reaction facility and improve the energy efficiency of the facility.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: February 15, 2011
    Assignee: Chiyoda Corporation
    Inventors: Takeshi Minami, Kenichi Imagawa, Atsuro Nagumo, Tetsuro Matsumura
  • Publication number: 20070129245
    Abstract: A catalyst for manufacturing synthesis gas has a carrier and a Group VIII metal carried by the carrier. The carrier contains a first ingredient, a second ingredient and a third ingredient. The first ingredient is an oxide of at least an alkaline earth metal selected from the group of magnesium, calcium, strontium and barium. The second ingredient is an oxide of at least an element selected from the group of scandium, yttrium and lanthanoids. The third ingredient is zirconia or a substance containing zirconia as principal ingredient and has a solid electrolytic property. The carrier may be formed by forming an overcoat film on a substrate by coating. Then, the overcoat film contains the above three ingredients. A catalyst according to the invention can remarkably reduce the dimensions of the reaction facility and improve the energy efficiency of the facility.
    Type: Application
    Filed: December 8, 2004
    Publication date: June 7, 2007
    Applicant: CHIYODA CORPORATION
    Inventors: Takeshi Minami, Kenichi Imagawa, Atsuro Nagumo, Tetsuro Matsumura
  • Patent number: 6387843
    Abstract: A method of preparing a catalyst, including molding a mixture of magnesium oxide with a binder selected from carbon, fatty acids having 12-22 carbon atoms, magnesium salts of fatty acids having 12-22 carbon atoms, carboxymethyl cellulose, a magnesium salt of carboxymethyl cellulose and polyvinyl alcohol and calcining the molded mixture to obtain a carrier having a specific surface area of 5 m2/g of less. The carrier is impregnated with an aqueous solution containing Rh and/or Ru compounds for loading a catalytic metal component and then dried and calcined. The catalyst is used for reforming a lower hydrocarbon gas with steam and carbon dioxide or with carbon dioxide to produce a synthesis gas.
    Type: Grant
    Filed: April 5, 2001
    Date of Patent: May 14, 2002
    Assignee: Chiyoda Corporation
    Inventors: Fuyuki Yagi, Atsuro Nagumo, Yukitaka Wada, Mitsunori Shimura
  • Patent number: 6376423
    Abstract: Disclosed are a catalyst for producing a synthesis gas using a carbon-containing organic compound as a raw material and a process for producing carbon monoxide. The catalyst for producing a synthesis gas is composed of a carrier formed of a metal oxide and at least one catalytic metal selected from rhodium, ruthenium, iridium, palladium and platinum and supported on the carrier and is characterized in that the catalyst has a specific surface area of 25 m2/g or less, in that the electronegativity of the metal ion of the carrier metal oxide is 13.0 or less and in that the amount of the supported catalytic metal is 0.0005-0.1 mole %, in terms of a metal, based on the carrier metal oxide.
    Type: Grant
    Filed: March 11, 1999
    Date of Patent: April 23, 2002
    Assignee: Chiyoda Corporation
    Inventors: Fuyuki Yagi, Atsuro Nagumo, Yukitaka Wada, Mitsunori Shimura, Sachio Asaoka, Shuhei Wakamatsu
  • Patent number: 6340437
    Abstract: Disclosed is a process for producing a synthesis gas by an autothermal reforming method including a step of partially oxidizing a carbon-containing organic compound to produce a high temperature mixed gas, and a synthesis producing step of reacting the unreacted carbon-containing organic compound contained in the high temperature mixed gas with carbon dioxide and/or steam, wherein a catalyst having a considerably suppressed carbon deposition activity is used as a catalyst for the synthesis gas producing step. The catalyst is characterized in that the catalyst comprises a carrier formed of a metal oxide, and at least one catalytic metal selected from rhodium, ruthenium, iridium, palladium and platinum and supported on the carrier, in that the catalyst has a specific surface area of 25 m2/g or less, in that metal ion of the carrier metal oxide has electronegativity of 13.0 or less, and in that the amount of the catalytic metal supported is 0.0005-0.
    Type: Grant
    Filed: March 11, 1999
    Date of Patent: January 22, 2002
    Assignee: Chiyoda Corporation
    Inventors: Fuyuki Yagi, Atsuro Nagumo, Yukitaka Wada, Mitsunori Shimura, Sachio Asaoka, Shuhei Wakamatsu