Patents by Inventor Atsuro Shirakami

Atsuro Shirakami has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220085634
    Abstract: A control method includes determining whether an internal resistance of a secondary battery is higher than a first threshold resistance, performing first discharge of the secondary battery if it is determined that the internal resistance is higher than the first threshold resistance, and performing at least one of a charge operation of the secondary battery and a discharge operation of the secondary battery after the first discharge is performed.
    Type: Application
    Filed: September 15, 2020
    Publication date: March 17, 2022
    Applicant: Panasonic Intellectual Property Management Co., Ltd.
    Inventor: Atsuro Shirakami
  • Patent number: 10985362
    Abstract: A negative electrode for an electrochemical device includes: a negative current collector; a first negative electrode active material layer supported on a first surface of the negative current collector; and a second negative electrode active material layer supported on a second surface of the negative current collector. And capacity C1 per unit mass of the first negative electrode active material layer is greater than capacity C2 per unit mass of the second negative electrode active material layer. As a result, it is possible to provide a negative electrode suited for an electrochemical device having high capacitance, the electrochemical device being manufactured by pre-doping the negative electrode with lithium ions.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: April 20, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Kenichi Nagamitsu, Atsuro Shirakami
  • Publication number: 20190067676
    Abstract: A negative electrode for an electrochemical device includes: a negative current collector; a first negative electrode active material layer supported on a first surface of the negative current collector; and a second negative electrode active material layer supported on a second surface of the negative current collector. And capacity C1 per unit mass of the first negative electrode active material layer is greater than capacity C2 per unit mass of the second negative electrode active material layer. As a result, it is possible to provide a negative electrode suited for an electrochemical device having high capacitance, the electrochemical device being manufactured by pre-doping the negative electrode with lithium ions.
    Type: Application
    Filed: February 21, 2017
    Publication date: February 28, 2019
    Applicant: Panasonic Intellectual Property Management Co. Ltd.
    Inventors: KENICHI NAGAMITSU, ATSURO SHIRAKAMI
  • Patent number: 8422199
    Abstract: The present invention provides an electrolyte highly reliable in charge and discharge in a high voltage condition, and an electrochemical capacitor using the same. The electrolyte of the present invention includes a solvent, an electrolyte salt having an anion having a perfluoro alkyl group represented by a following composition formula, and an acid inducing substance having a fluorine atom for an anion, characterized in that the weight ratio of the acid inducing substance is in a range of 0.0001 to 2.0 wt %: MX+[Q(Rf)yFz]X? (wherein Q is a group 13 or group 15 element in the periodic table, Rf is a perfluoro alkyl group (CnF2n+1), n is a natural number, 1?y<6, 1?z<6, MX+ is a cation of Xth valence, and X is a natural number from 1 to 3).
    Type: Grant
    Filed: February 15, 2010
    Date of Patent: April 16, 2013
    Assignee: Panasonic Corporation
    Inventors: Shotaro Doi, Atsuro Shirakami, Kiyohiro Isii, Susumu Nomoto, Hideki Shimamoto
  • Patent number: 8203826
    Abstract: A lithium ion capacitor includes a positive electrode, a negative electrode, and a non-protonic organic solvent electrolytic solution of a lithium salt. A positive electrode active material is a material capable of reversibly doping a lithium ion and/or an anion. A negative electrode active material is a material capable of reversibly doping a lithium ion. The lithium ion is doped in advance to either one or both of the negative electrode and the positive electrode so that a positive electrode potential after the positive electrode and the negative electrode are short-circuited is 2.0 V (relative to Li/Li+) or less when capacitance per unit weight of the positive electrode is C+(F/g), weight of the positive electrode active material is W+(g), capacitance per unit weight of negative electrode is C?(F/g), and weight of the negative electrode active material is W?(g), a value of (C?×W?)/(C+×W+) is 5 or more.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: June 19, 2012
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Kohei Matsui, Atsuro Shirakami, Nobuo Ando, Shinichi Tasaki, Risa Miyagawa, Osamu Hatozaki, Yukinori Hato
  • Patent number: 8098480
    Abstract: A lithium ion capacitor includes a positive electrode made of a material capable of reversibly carrying either one or both of a lithium ion and an anion, a negative electrode made of a material capable of reversibly carrying a lithium ion, and an electrolytic solution made of a non-protonic organic solvent electrolytic solution of a lithium salt. A negative electrode active material is non-graphitizable carbon having a ratio of number of hydrogen atoms to number of carbon atoms of zero or more and less than 0.05. The lithium ion is doped in advance to either one or both of the negative electrode and the positive electrode so that a negative electrode potential when a cell is discharged to a voltage one half a charging voltage of the cell is 0.15 V or less relative to a lithium ion potential.
    Type: Grant
    Filed: October 17, 2006
    Date of Patent: January 17, 2012
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Nobuo Ando, Kenji Kojima, Shinichi Tasaki, Hiromoto Taguchi, Kohei Matsui, Atsuro Shirakami, Yukinori Hato
  • Publication number: 20110299224
    Abstract: The present invention provides an electrolyte highly reliable in charge and discharge in a high voltage condition, and an electrochemical capacitor using the same. The electrolyte of the present invention includes a solvent, an electrolyte salt having an anion having a perfluoro alkyl group represented by a following composition formula, and an acid inducing substance having a fluorine atom for an anion, characterized in that the weight ratio of the acid inducing substance is in a range of 0.0001 to 2.0 wt %: MX+[Q(Rf)yFz]X? (wherein Q is a group 13 or group 15 element in the periodic table, Rf is a perfluoro alkyl group (CnF2n+1), n is a natural number, 1?y<6, 1?z<6, MX+ is a cation of Xth valence, and X is a natural number from 1 to 3).
    Type: Application
    Filed: February 15, 2010
    Publication date: December 8, 2011
    Inventors: Shotaro Doi, Atsuro Shirakami
  • Patent number: 7768769
    Abstract: A lithium ion capacitor having a high capacity retention at the time of continuous charge at a high temperature and excellent durability. The lithium ion capacitor includes a positive electrode, a negative electrode and an aprotic organic solvent electrolyte solution of a lithium salt as an electrolytic solution. The positive electrode active material is a material capable of reversibly supporting lithium ions and/or anions, a negative electrode active material is a material capable of reversibly supporting lithium ions, the negative electrode and/or the positive electrode is doped with lithium ions so that the potential of the positive electrode is at most 2.0 V after the positive electrode and the negative electrode are short-circuited, and the electrolytic solution contains vinylene carbonate or its derivative.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: August 3, 2010
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Kohei Matsui, Risa Takahata, Nobuo Ando, Atsuro Shirakami, Shinichi Tasaki, Yukinori Hato
  • Patent number: 7733629
    Abstract: A lithium ion capacitor including a positive electrode, a negative electrode, and an aprotic organic solvent solution of a lithium salt as an electrolytic solution. The positive electrode active material is capable of reversibly supporting lithium ions and/or anions, the negative electrode active material is capable of reversibly supporting lithium ions and anions, and the potentials of the positive electrode and the negative electrode are at most 2.0 V after the positive electrode and the negative electrode are short-circuited. The positive electrode and the negative electrode are alternately laminated with a separator interposed therebetween to constitute an electrode unit, the cell is constituted by at least two such electrode units, lithium metal is disposed between the electrode units, and lithium ions are preliminarily supported by the negative electrode and/or the positive electrode by electrochemical contact of the lithium metal with the negative electrode and/or the positive electrode.
    Type: Grant
    Filed: October 19, 2005
    Date of Patent: June 8, 2010
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Shinichi Tasaki, Nobuo Ando, Mitsuru Nagai, Atsuro Shirakami, Kohei Matsui, Yukinori Hato
  • Publication number: 20100128415
    Abstract: A lithium ion capacitor includes a positive electrode made of a material capable of reversibly carrying either one or both of a lithium ion and an anion, a negative electrode made of a material capable of reversibly carrying a lithium ion, and an electrolytic solution made of a non-protonic organic solvent electrolytic solution of a lithium salt. A negative electrode active material is non-graphitizable carbon having a ratio of number of hydrogen atoms to number of carbon atoms of zero or more and less than 0.05. The lithium ion is doped in advance to either one or both of the negative electrode and the positive electrode so that a negative electrode potential when a cell is discharged to a voltage one half a charging voltage of the cell is 0.15 V or less relative to a lithium ion potential.
    Type: Application
    Filed: October 17, 2006
    Publication date: May 27, 2010
    Applicant: FUJI JUKOGYO KABUSHIKI KAISHA
    Inventors: Nobuo Ando, Kenji Kojima, Shinichi Tasaki, Hiromoto Taguchi, Kohei Matsui, Atsuro Shirakami, Yukinori Hato
  • Patent number: 7697264
    Abstract: It is to provide a lithium ion capacitor having a high energy density, a high output density, a large capacity and high safety. A lithium ion capacitor comprising a positive electrode, a negative electrode and an aprotic organic solvent solution of a lithium salt as an electrolytic solution, wherein a positive electrode active material is a material capable of reversibly supporting lithium ions and anions, a negative electrode active material is a material capable of reversibly supporting lithium ions, and the potentials of the positive electrode and the negative electrode are at most 2.
    Type: Grant
    Filed: October 19, 2005
    Date of Patent: April 13, 2010
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Shinichi Tasaki, Nobuo Ando, Mitsuru Nagai, Atsuro Shirakami, Kohei Matsui, Yukinori Hato
  • Publication number: 20090174986
    Abstract: It is to provide a lithium ion capacitor having a high capacity retention at the time of continuous charge at a high temperature and excellent in durability. A lithium ion capacitor comprising a positive electrode, a negative electrode and an aprotic organic solvent electrolyte solution of a lithium salt as an electrolytic solution, characterized in that a positive electrode active material is a material capable of reversibly supporting lithium ions and/or anions, a negative electrode active material is a material capable of reversibly supporting lithium ions, the negative electrode and/or the positive electrode is doped with lithium ions so that the potential of the positive electrode is at most 2.0 V after the positive electrode and the negative electrode are short-circuited, and the electrolytic solution contains vinylene carbonate or its derivative.
    Type: Application
    Filed: October 28, 2005
    Publication date: July 9, 2009
    Applicant: FUJI JUKOGYO KABUSHIKI KAISHA
    Inventors: Kohei Matsui, Risa Takahata, Nobuo Ando, Atsuro Shirakami, Shinichi Tasaki, Yukinori Hato
  • Publication number: 20090161296
    Abstract: A lithium ion capacitor includes a positive electrode, a negative electrode, and a non-protonic organic solvent electrolytic solution of a lithium salt. A positive electrode active material is a material capable of reversibly doping a lithium ion and/or an anion. A negative electrode active material is a material capable of reversibly doping a lithium ion. The lithium ion is doped in advance to either one or both of the negative electrode and the positive electrode so that a positive electrode potential after the positive electrode and the negative electrode are short-circuited is 2.0 V (relative to Li/Li+) or less when capacitance per unit weight of the positive electrode is C+(F/g), weight of the positive electrode active material is W+(g), capacitance per unit weight of negative electrode is C?(F/g), and weight of the negative electrode active material is W?(g), a value of (C?×W?)/(C+×W+) is 5 or more.
    Type: Application
    Filed: December 7, 2006
    Publication date: June 25, 2009
    Applicant: FUJI JUKOGYO KABUSHIKI KAISHA
    Inventors: Kohei Matsui, Atsuro Shirakami, Nobuo Ando, Shinichi Tasaki, Risa Miyagawa, Osamu Hatozaki, Yukinori Hato
  • Publication number: 20090154064
    Abstract: A lithium ion capacitor including a positive electrode, a negative electrode, and an aprotic organic solvent solution of a lithium salt as an electrolytic solution. The positive electrode active material is capable of reversibly supporting lithium ions and/or anions, the negative electrode active material is capable of reversibly supporting lithium ions and anions, and the potentials of the positive electrode and the negative electrode are at most 2.0 V after the positive electrode and the negative electrode are short-circuited. The positive electrode and the negative electrode are alternately laminated with a separator interposed therebetween to constitute an electrode unit, the cell is constituted by at least two such electrode units, lithium metal is disposed between the electrode units, and lithium ions are preliminarily supported by the negative electrode and/or the positive electrode by electrochemical contact of the lithium metal with the negative electrode and/or the positive electrode.
    Type: Application
    Filed: October 19, 2005
    Publication date: June 18, 2009
    Inventors: Shinichi Tasaki, Nobuo Ando, Mitsuru Nagai, Atsuro Shirakami, Kohei Matsui, Yukinori Hato
  • Publication number: 20090135549
    Abstract: A lithium ion capacitor includes a positive electrode including a positive electrode active material capable of reversibly doping either one or both of a lithium ion and an anion, a negative electrode including a negative electrode active material capable of reversibly doping a lithium ion, and a non-protonic organic solvent electrolytic solution of a lithium salt as an electrolytic solution. The lithium ion is doped to either one or both of the negative electrode and positive electrode so that the positive electrode potential after the positive electrode and negative electrode are short-circuited is 2.0 V or less. A surface of the negative electrode is covered with a polymer.
    Type: Application
    Filed: December 12, 2006
    Publication date: May 28, 2009
    Applicant: FUJI JUKOGYO KABUSHIKI KAISHA
    Inventors: Nobuo Ando, Shinichi Tasaki, Kohei Matsui, Atsuro Shirakami, Hiromoto Taguchi, Kenji Kojima
  • Publication number: 20090027831
    Abstract: It is to provide a lithium ion capacitor having a high energy density, a high output density, a large capacity and high safety. A lithium ion capacitor comprising a positive electrode, a negative electrode and an aprotic organic solvent solution of a lithium salt as an electrolytic solution, wherein a positive electrode active material is a material capable of reversibly supporting lithium ions and anions, a negative electrode active material is a material capable of reversibly supporting lithium ions, and the potentials of the positive electrode and the negative electrode are at most 2.
    Type: Application
    Filed: October 19, 2005
    Publication date: January 29, 2009
    Applicant: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Shinichi Tasaki, Nobuo Ando, Mitsuru Nagai, Atsuro Shirakami, Kohei Matsui, Yukinori Hato