Patents by Inventor Atsushi Kosaka

Atsushi Kosaka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11970644
    Abstract: Provided is a method for peeling a PSA sheet adhered on a polarizing plate. The PSA sheet has a PSA layer. The PSA layer includes a layer A forming at least one surface of the PSA layer. Of the polarizing plate, the surface to which the PSA sheet is adhered is corona-treated or plasma-treated. The peeling method includes a water-peel step in which the PSA sheet is peeled from the polarizing plate, in a state where an aqueous liquid exits at the interface between the polarizing plate and the PSA sheet at the front line of peeling the PSA sheet from the polarizing plate, with the aqueous liquid allowed to further enter the interface following the movement of the peel front line.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: April 30, 2024
    Assignee: NITTO DENKO CORPORATION
    Inventors: Naofumi Kosaka, Yosuke Shimizu, Satoshi Honda, Taiki Shimokuri, Shou Takarada, Masayuki Satake, Kenichi Okada, Atsushi Takashima, Ginji Mizuhara
  • Patent number: 8333079
    Abstract: An adsorption heat pump is provided in which water vapor can be efficiently adsorbed and desorbed using a heat source having a lower temperature than ones heretofore in use because the pump employs an adsorbent which has a large difference in water adsorption amount in adsorption/desorption and can be regenerated (release the adsorbate) at a low temperature. The invention provides an adsorption heat pump which comprises an adsorbate, an adsorption/desorption part having an adsorbent for adsorbate adsorption/desorption, a vaporization part for adsorbate vaporization which has been connected to the adsorption/desorption part, and a condensation part for adsorbate condensation which has been connected to the adsorption/desorption part, wherein the adsorbent, when examined at 25° C., gives a water vapor adsorption isotherm which, in the relative vapor pressure range of from 0.05 to 0.30, has a relative vapor pressure region in which a change in relative vapor pressure of 0.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: December 18, 2012
    Assignees: Mitsubishi Plastics, Inc., Denso Corporation
    Inventors: Hiroyuki Kakiuchi, Takahiko Takewaki, Masaru Fujii, Masanori Yamazaki, Hideaki Takumi, Hiromu Watanabe, Kouji Inagaki, Atsushi Kosaka, Seiji Inoue, Satoshi Inoue
  • Patent number: 7527777
    Abstract: Subjects for the invention are to provide a zeolite reduced in performance deterioration in repetitions of use or during long-term use and a process for producing the same and to provide an adsorbent comprising the zeolite and a heat utilization system or the like employing the adsorbent. The invention relates to a zeolite which has a framework density of from 10 T/nm3 to 16 T/nm3 and a carbon content of from 1% by weight to 6% by weight and satisfies the following (1) or (2): (1) the zeolite is an aluminophosphate which has a nitrogen content of from 0.5% by weight to 12% by weight and in which the aluminum may be partly replaced by Me; (2) the zeolite is a silicoaluminophosphate in which the aluminum may be partly replaced by Me and which, when burned to a carbon content lower than 0.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: May 5, 2009
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Hiromu Watanabe, Takahiko Takewaki, Masanori Yamazaki, Hiroyuki Kakiuchi, Kouji Inagaki, Atsushi Kosaka, Norikazu Hosokawa
  • Patent number: 7497089
    Abstract: An adsorption heat pump is provided in which water vapor can be efficiently adsorbed and desorbed using a heat source having a lower temperature than ones heretofore in use because the pump employs an adsorbent which has a large difference in water adsorption amount in adsorption/desorption and can be regenerated (release the adsorbate) at a low temperature. The invention provides an adsorption heat pump which comprises an adsorbate, an adsorption/desorption part having an adsorbent for adsorbate adsorption/desorption, a vaporization part for adsorbate vaporization which has been connected to the adsorption/desorption part, and a condensation part for adsorbate condensation which has been connected to the adsorption/desorption part, wherein the adsorbent, when examined at 25° C., gives a water vapor adsorption isotherm which, in the relative vapor pressure range of from 0.05 to 0.30, has a relative vapor pressure region in which a change in relative vapor pressure of 0.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: March 3, 2009
    Assignees: Mitsubishi Chemical Corporation, Denso Corporation
    Inventors: Hiroyuki Kakiuchi, Takahiko Takewaki, Masaru Fujii, Masanori Yamazaki, Hideaki Takumi, Hiromu Watanabe, Kouji Inagaki, Atsushi Kosaka, Seiji Inoue, Satoshi Inoue
  • Publication number: 20090025403
    Abstract: An adsorption heat pump is provided in which water vapor can be efficiently adsorbed and desorbed using a heat source having a lower temperature than ones heretofore in use because the pump employs an adsorbent which has a large difference in water adsorption amount in adsorption/desorption and can be regenerated (release the adsorbate) at a low temperature. The invention provides an adsorption heat pump which comprises an adsorbate, an adsorption/desorption part having an adsorbent for adsorbate adsorption/desorption, a vaporization part for adsorbate vaporization which has been connected to the adsorption/desorption part, and a condensation part for adsorbate condensation which has been connected to the adsorption/desorption part, wherein the adsorbent, when examined at 25° C., gives a water vapor adsorption isotherm which, in the relative vapor pressure range of from 0.05 to 0.30, has a relative vapor pressure region in which a change in relative vapor pressure of 0.
    Type: Application
    Filed: October 1, 2008
    Publication date: January 29, 2009
    Applicants: MITSUBISHI CHEMICAL, CORPORATION, DENSO CORPORATION
    Inventors: Hiroyuki Kakiuchi, Takahiko Takewaki, Masaru Fujii, Masanori Yamazaki, Hideaki Takumi, Hiromu Watanabe, Kouji Inagaki, Atsushi Kosaka, Seiji Inoue, Satoshi Inoue
  • Publication number: 20060245994
    Abstract: Subjects for the invention are to provide a zeolite reduced in performance deterioration in repetitions of use or during long-term use and a process for producing the same and to provide an adsorbent comprising the zeolite and a heat utilization system or the like employing the adsorbent. The invention relates to a zeolite which has a framework density of from 10 T/nm3 to 16 T/nm3 and a carbon content of from 1% by weight to 6% by weight and satisfies the following (1) or (2): (1) the zeolite is an aluminophosphate which has a nitrogen content of from 0.5% by weight to 12% by weight and in which the aluminum may be partly replaced by Me; (2) the zeolite is a silicoaluminophosphate in which the aluminum may be partly replaced by Me and which, when burned to a carbon content lower than 0.
    Type: Application
    Filed: December 20, 2005
    Publication date: November 2, 2006
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Hiromu Watanabe, Takahiko Takewaki, Masanori Yamazaki, Hiroyuki Kakiuchi, Kouji Inagaki, Atsushi Kosaka, Norikazu Hosokawa
  • Patent number: 7037360
    Abstract: An adsorbent for regenerator systems, to a heat utilization system and a regenerator system that comprise the adsorbent, and to a ferroaluminophosphate and a method for production thereof. More precisely, the invention relates to an adsorbent favorable for regenerator systems, which efficiently utilizes the heat source obtainable from cars and the like to thereby realize efficient regenerator systems, to a regenerator system that comprises the adsorbent, to a ferroaluminophosphate to be the adsorbent favorable for regenerator systems, and to a method for production thereof.
    Type: Grant
    Filed: August 12, 2003
    Date of Patent: May 2, 2006
    Assignees: Mitsubishi Chemical Corporation, Denso Corporation
    Inventors: Kouji Inagaki, Atsushi Kosaka, Satoshi Inoue, Yasukazu Aikawa, Takahiko Takewaki, Masanori Yamazaki, Hiromu Watanabe, Hiroyuki Kakiuchi, Miki Iwade
  • Patent number: 6929575
    Abstract: A pulley comprises a disk and an insert. The insert is fitted into the center of the disk integrally. Linear expansion coefficient of the disk is larger than the same of the insert. A concavity is formed on a periphery surface of the insert so that both side surfaces of the concavity are slanted outwardly, i.e. a distance between the side surfaces become large in proportion to being far from the centerline of the insert. When a slanting angle is defined as an angle between the side surface and a line which is perpendicular to the centerline of the insert on a plane including the centerline of the insert, the slanting angle is set from ten degrees to forty-five degrees, preferably from fifteen degrees to forty-five degrees. The disk is made of synthetic resin such as phenol resin, and the insert is made of metal such as iron.
    Type: Grant
    Filed: March 25, 2003
    Date of Patent: August 16, 2005
    Assignee: Toyoda Koki Kabushiki Kaisha
    Inventors: Hiroyuki Takahashi, Atsushi Kosaka
  • Patent number: 6926253
    Abstract: An air passage in an air-conditioner such as an automotive air-conditioner is selectively opened or closed by moving a position of an opening formed on a film screen relative to the air passage. The film screen is coupled to a pair of rollers, forming a curved path between the pair of rollers guided by a guiding surface. The film screen is formed by laminating a first film made of resin and a second film made of woven fabric having a higher elongation rate for a temperature rise than the first film. The second film is positioned inside of the curved path to prevent a shape of the roller or the guiding surface from being easily transferred to the film screen.
    Type: Grant
    Filed: November 17, 2003
    Date of Patent: August 9, 2005
    Assignee: DENSO Corporation
    Inventors: Takahiro Tokunaga, Koji Ito, Atsushi Kosaka
  • Publication number: 20040104372
    Abstract: An air passage in an air-conditioner such as an automotive air-conditioner is selectively opened or closed by moving a position of an opening formed on a film screen relative to the air passage. The film screen is coupled to a pair of rollers, forming a curved path between the pair of rollers guided by a guiding surface. The film screen is formed by laminating a first film made of resin and a second film made of woven fabric having a higher elongation rate for a temperature rise than the first film. The second film is positioned inside of the curved path to prevent a shape of the roller or the guiding surface from being easily transferred to the film screen.
    Type: Application
    Filed: November 17, 2003
    Publication date: June 3, 2004
    Inventors: Takahiro Tokunaga, Koji Ito, Atsushi Kosaka
  • Publication number: 20040093876
    Abstract: An adsorbent for regenerator systems, to a heat utilization system and a regenerator system that comprise the adsorbent, and to a ferroaluminophosphate and a method for production thereof. More precisely, the invention relates to an adsorbent favorable for regenerator systems, which efficiently utilizes the heat source obtainable from cars and the like to thereby realize efficient regenerator systems, to a regenerator system that comprises the adsorbent, to a ferroaluminophosphate to be the adsorbent favorable for regenerator systems, and to a method for production thereof.
    Type: Application
    Filed: August 12, 2003
    Publication date: May 20, 2004
    Applicants: MITSUBISHI CHEMICAL CORPORATION, DENSO CORPORATION
    Inventors: Kouji Inagaki, Atsushi Kosaka, Satoshi Inoue, Yasukazu Aikawa, Takahiko Takewaki, Masanori Yamazaki, Hiromu Watanabe, Hiroyuki Kakiuchi, Miki Iwade
  • Publication number: 20040089001
    Abstract: An adsorption heat pump is provided in which water vapor can be efficiently adsorbed and desorbed using a heat source having a lower temperature than ones heretofore in use because the pump employs an adsorbent which has a large difference in water adsorption amount in adsorption/desorption and can be regenerated (release the adsorbate) at a low temperature.
    Type: Application
    Filed: August 21, 2003
    Publication date: May 13, 2004
    Applicants: MITSUBISHI CHEMICAL CORPORATION, DENSO CORPORATION
    Inventors: Hiroyuki Kakiuchi, Takahiko Takewaki, Masaru Fujii, Masanori Yamazaki, Hideaki Takumi, Hiromu Watanabe, Kouji Inagaki, Atsushi Kosaka, Seiji Inoue, Satoshi Inoue
  • Publication number: 20030216206
    Abstract: A pulley comprises a disk and an insert. The insert is fitted into the center of the disk integrally. Linear expansion coefficient of the disk is larger than the same of the insert. A concavity is formed on a periphery surface of the insert so that both side surfaces of the concavity are slanted outwardly, i.e. a distance between the side surfaces become large in proportion to being far from the centerline of the insert. When a slanting angle is defined as an angle between the side surface and a line which is perpendicular to the centerline of the insert on a plane including the centerline of the insert, the slanting angle is set from ten degrees to forty-five degrees, preferably from fifteen degrees to forty-five degrees. The disk is made of synthetic resin such as phenol resin, and the insert is made of metal such as iron.
    Type: Application
    Filed: March 25, 2003
    Publication date: November 20, 2003
    Applicant: TOYODA KOKI KABUSHIKI KAISHA
    Inventors: Hiroyuki Takahashi, Atsushi Kosaka
  • Patent number: 6619071
    Abstract: In an adsorption-type refrigerating apparatus, an adsorber includes therein an adsorbent having a temperature-dependent characteristic in which an amount adsorbed in an adsorption step is larger than an amount adsorbed in a desorption step, even when a vapor pressure rate in the adsorption step is equal to or lower than a vapor pressure rate in the desorption step. Therefore, even when the cooling temperature of outside air for cooling the adsorbent increases, a sufficient cooling capacity can be obtained. In addition, a difference between the amount adsorbed in the adsorption step and the amount adsorbed in the desorption step can be made larger.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: September 16, 2003
    Assignee: Denso Corporation
    Inventors: Hideaki Sato, Katsuya Ishii, Atsushi Kosaka, Shigeo Numazawa, Seiji Inoue, Kouji Inagaki, Kazuhisa Yano, Norihiko Setoyama, Yoshiaki Fukuyama
  • Patent number: 6562754
    Abstract: An adsorbent which desorbs water by being heated and adsorbs water by being chilled, comprising a porous body having a pore volume of not less than 0.2 cm3/g and a pore size from 0.6-1.6 nm. This adsorbent is good for an adsorptive-type refrigeration apparatus, used in an automotive air conditioner, which has an adsorbing core.
    Type: Grant
    Filed: March 17, 2000
    Date of Patent: May 13, 2003
    Assignee: Denso Corporation
    Inventors: Koji Inagaki, Masaru Urushihara, Yasushi Kouno, Atsushi Kosaka, Hideaki Sato, Yoshiki Chujo
  • Publication number: 20030005721
    Abstract: In an adsorption-type refrigerating apparatus, an adsorber includes therein an adsorbent having a temperature-dependent characteristic in which an amount adsorbed in an adsorption step is larger than an amount adsorbed in a desorption step, even when a vapor pressure rate in the adsorption step is equal to or lower than a vapor pressure rate in the desorption step. Therefore, even when the cooling temperature of outside air for cooling the adsorbent increases, a sufficient cooling capacity can be obtained. In addition, a difference between the amount adsorbed in the adsorption step and the amount adsorbed in the desorption step can be made larger.
    Type: Application
    Filed: June 6, 2002
    Publication date: January 9, 2003
    Inventors: Hideaki Sato, Katsuya Ishii, Atsushi Kosaka, Shigeo Numazawa, Seiji Inoue, Kouji Inagaki, Kazuhisa Yano, Norihiko Setoyama, Yoshiaki Fukushima