Patents by Inventor Atsushi Ogino

Atsushi Ogino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230219167
    Abstract: A laser processing method of laser processing a workpiece made of at least one sheet of metallic foil includes: generating laser light by supplying pulsed pumping energy to a laser medium, the laser light including an optical pulse component and a continuous light component that is continuous with the optical pulse component and temporally after the optical pulse component; irradiating a surface of the workpiece with the laser light; and limiting duration of the continuous light component such that a ratio of energy of the continuous light component to energy of the optical pulse component is equal to or less than a predetermined value.
    Type: Application
    Filed: March 17, 2023
    Publication date: July 13, 2023
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Atsushi OGINO, Ryosuke TAMURA, Kousuke KASHIWAGI, Masakazu YOSHIHARA, Keisuke TOMINAGA, Takashi KAYAHARA, Keigo MATSUNAGA
  • Patent number: 11437312
    Abstract: A metal insulator metal capacitor and method for fabricating a metal insulator metal capacitor (MIMcap) are disclosed. A first level metal pattern is embedded in a first dielectric layer over a substrate. The first level metal pattern has a top surface co-planar with a top surface of the first dielectric layer. In a selected etch step, either one of the first metal pattern or the first dielectric is etched to form a stepped top surface. A conformal insulating layer on the stepped top surface. The MIMcap is formed on the conformal insulating layer in a conformal manner.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: September 6, 2022
    Assignee: International Business Machines Corporation
    Inventors: Jim Shih-Chun Liang, Naftali E Lustig, Atsushi Ogino, Nan Jing
  • Patent number: 11417525
    Abstract: Methods of self-aligned multiple patterning. A hardmask is deposited over an interlayer dielectric layer. A mandrel is formed over the hardmask. A block mask is formed that covers a first lengthwise section of the mandrel and that exposes second and third lengthwise sections of the mandrel. After forming the block mask, the second and third lengthwise sections of the mandrel are removed to define a pattern including respective first and second mandrel lines that are separated from each other by the first lengthwise section of the mandrel. The first mandrel line and the second mandrel line expose respective portions of the hardmask, and the first lengthwise section of the mandrel line covers another portion of the hardmask. The pattern is transferred to the hardmask with an etching process, and subsequently transferred to the interlayer dielectric layer with another etching process.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: August 16, 2022
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Martin O'Toole, Keith Donegan, Brendan O'Brien, Hsueh-Chung Chen, Terry A. Spooner, Craig Child, Sean Reidy, Ravi Prakash Srivastava, Louis Lanzerotti, Atsushi Ogino
  • Patent number: 11308257
    Abstract: A structure including a plurality of dielectric regions is described. The structure can include a rivet cell. The rivet cell can include a set of stacked vias. The rivet cell can extend through a stress hotspot of the structure. A length of the rivet cell can thread through at least one dielectric region among the plurality of dielectric regions. The rivet cell can be among a number of rivet cells inserted in the stress hotspot. The stress hotspot can be among a plurality of stress hotspots across the structure. A length of the rivet cell can be based on a model of a relationship between the length of the rivet cell and an energy release rate of the structure. The rivet cell can thread through an interface between a first dielectric region and a second dielectric region having different dielectric constants.
    Type: Grant
    Filed: December 15, 2020
    Date of Patent: April 19, 2022
    Assignee: International Business Machines Corporation
    Inventors: Dureseti Chidambarrao, David Wolpert, Atsushi Ogino, Matthew T. Guzowski, Steven Paul Ostrander, Tuhin Sinha, Michael Stewart Gray
  • Patent number: 11101170
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to a dual airgap structure and methods of manufacture. The structure includes: a lower metal line; a plurality of upper metal lines; and a first airgap between the lower metal line and at least one upper metal line of the plurality of upper metal lines.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: August 24, 2021
    Assignee: GLOBALFOUNDRIES U.S. INC.
    Inventors: Motoi Ichihashi, Atsushi Ogino
  • Publication number: 20210249349
    Abstract: A metal insulator metal capacitor and method for fabricating a metal insulator metal capacitor (MIMcap) are disclosed. A first level metal pattern is embedded in a first dielectric layer over a substrate. The first level metal pattern has a top surface co-planar with a top surface of the first dielectric layer. In a selected etch step, either one of the first metal pattern or the first dielectric is etched to form a stepped top surface. A conformal insulating layer on the stepped top surface. The MIMcap is formed on the conformal insulating layer in a conformal manner.
    Type: Application
    Filed: February 7, 2020
    Publication date: August 12, 2021
    Inventors: Jim Shih-Chun Liang, Naftali E Lustig, Atsushi Ogino, Nan Jing
  • Patent number: 10796973
    Abstract: Structures for testing a field effect-transistor or Kelvin field-effect transistor, and methods of forming a structure for testing a field-effect transistor or Kelvin field-effect transistor. The structure includes a device-under-testing that has one or more source/drain regions and a first metallization level arranged over the device-under-testing. The first metallization level includes one or more first interconnect lines. The structure further includes a contact level having one or more first contacts arranged between the first metallization level and the device-under-testing. The one or more first contacts directly connect the one or more first interconnect lines with the one or more source/drain regions. The structure further includes a second metallization level arranged over the first metallization level. The second metallization level has a first test pad and one or more second interconnect lines connecting the one or more first interconnect lines with the first test pad.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: October 6, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Mankyu Yang, Vara Govindeswara Reddy Vakada, Edward Maciejewski, Brian Greene, Atsushi Ogino, Vikrant Chauhan, Prianka Sengupta
  • Patent number: 10790204
    Abstract: Structures for testing a field effect-transistor or Kelvin field-effect transistor, and methods of forming a structure for testing a field-effect transistor or Kelvin field-effect transistor. The structure includes a test pad, a device-under-testing having one or more source/drain regions, and a metallization level arranged over the device-under-testing. The metallization level includes one or more interconnect lines that are connected with the test pad. One or more contacts, which are arranged between the metallization level and the device-under-testing, directly connect the one or more interconnect lines with the one or more source/drain regions.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: September 29, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Mankyu Yang, Vara Govindeswara Reddy Vakada, Edward Maciejewski, Brian Greene, Atsushi Ogino, Vikrant Chauhan, Prianka Sengupta
  • Publication number: 20200152531
    Abstract: Structures for testing a field effect-transistor or Kelvin field-effect transistor, and methods of forming a structure for testing a field-effect transistor or Kelvin field-effect transistor. The structure includes a device-under-testing that has one or more source/drain regions and a first metallization level arranged over the device-under-testing. The first metallization level includes one or more first interconnect lines. The structure further includes a contact level having one or more first contacts arranged between the first metallization level and the device-under-testing. The one or more first contacts directly connect the one or more first interconnect lines with the one or more source/drain regions. The structure further includes a second metallization level arranged over the first metallization level. The second metallization level has a first test pad and one or more second interconnect lines connecting the one or more first interconnect lines with the first test pad.
    Type: Application
    Filed: May 29, 2019
    Publication date: May 14, 2020
    Inventors: Mankyu Yang, Vara Govindeswara Reddy Vakada, Edward Maciejewski, Brian Greene, Atsushi Ogino, Vikrant Chauhan, Prianka Sengupta
  • Publication number: 20200152530
    Abstract: Structures for testing a field effect-transistor or Kelvin field-effect transistor, and methods of forming a structure for testing a field-effect transistor or Kelvin field-effect transistor. The structure includes a test pad, a device-under-testing having one or more source/drain regions, and a metallization level arranged over the device-under-testing. The metallization level includes one or more interconnect lines that are connected with the test pad. One or more contacts, which are arranged between the metallization level and the device-under-testing, directly connect the one or more interconnect lines with the one or more source/drain regions.
    Type: Application
    Filed: November 9, 2018
    Publication date: May 14, 2020
    Inventors: Mankyu Yang, Vara Govindeswara Reddy Vakada, Edward Maciejewski, Brian Greene, Atsushi Ogino, Vikrant Chauhan, Prianka Sengupta
  • Publication number: 20200111668
    Abstract: Methods of self-aligned multiple patterning. A hardmask is deposited over an interlayer dielectric layer. A mandrel is formed over the hardmask. A block mask is formed that covers a first lengthwise section of the mandrel and that exposes second and third lengthwise sections of the mandrel. After forming the block mask, the second and third lengthwise sections of the mandrel are removed to define a pattern including respective first and second mandrel lines that are separated from each other by the first lengthwise section of the mandrel. The first mandrel line and the second mandrel line expose respective portions of the hardmask, and the first lengthwise section of the mandrel line covers another portion of the hardmask. The pattern is transferred to the hardmask with an etching process, and subsequently transferred to the interlayer dielectric layer with another etching process.
    Type: Application
    Filed: October 8, 2018
    Publication date: April 9, 2020
    Inventors: Martin O'Toole, Keith Donegan, Brendan O'Brien, Hsueh-Chung Chen, Terry A. Spooner, Craig Child, Sean Reidy, Ravi Prakash Srivastava, Louis Lanzerotti, Atsushi Ogino
  • Patent number: 10566411
    Abstract: Device structures and fabrication methods for an on-chip resistor. A resistor body is formed on an interlayer dielectric layer of a contact level. A contact is formed that extends vertically through the interlayer dielectric layer. One or more dielectric layers are formed over the contact level, and a metal feature is formed in the one or more dielectric layers. The metal feature is at least in part in direct contact with a portion of the resistor body.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: February 18, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Atsushi Ogino, Lin Hu, Brian Greene
  • Publication number: 20190333801
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to a dual airgap structure and methods of manufacture. The structure includes: a lower metal line; a plurality of upper metal lines; and a first airgap between the lower metal line and at least one upper metal line of the plurality of upper metal lines.
    Type: Application
    Filed: July 12, 2019
    Publication date: October 31, 2019
    Inventors: Motoi ICHIHASHI, Atsushi OGINO
  • Patent number: 10438890
    Abstract: Disclosed herein is an integrated circuit (IC) including a first metal layer running in a first direction, a second metal layer running in a second direction perpendicular to the first direction, the second metal layer above the first metal layer and a third metal layer running in the first direction above the second metal layer. A viabar electrically connects the first metal layer to the third metal layer, the viabar running in the first direction wherein the viabar vertically extends from the first metal layer to the third metal layer. A method of manufacturing the IC is provided.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: October 8, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Erdem Kaltalioglu, Atsushi Ogino
  • Patent number: 10403574
    Abstract: A method of forming a semiconductor structure includes forming a first insulating layer containing a first metal layer embedded therein and on a surface of a semiconductor substrate. The method further includes forming an inter-layer dielectric (ILD) layer on the first insulating layer, and forming at least one via trench structure including a first metallization trench and a via in the ILD layer. In addition, the method also includes depositing a metal material to form a first metallization layer in the first metallization trench, a via contact in the via, and a second metal layer on top of at least a portion of the first metal layer in the opening of the first insulating layer. The first metal layer and the second metal layer constitute a multilayer metal contact located in the opening of the first insulating layer.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: September 3, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Jim Shih-Chun Liang, Atsushi Ogino, Justin C. Long
  • Patent number: 10395980
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to a dual airgap structure and methods of manufacture. The structure includes: a lower metal line; a plurality of upper metal lines; and a first airgap between the lower metal line and at least one upper metal line of the plurality of upper metal lines.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: August 27, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Motoi Ichihashi, Atsushi Ogino
  • Publication number: 20190259649
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to a dual airgap structure and methods of manufacture. The structure includes: a lower metal line; a plurality of upper metal lines; and a first airgap between the lower metal line and at least one upper metal line of the plurality of upper metal lines.
    Type: Application
    Filed: February 21, 2018
    Publication date: August 22, 2019
    Inventors: Motoi ICHIHASHI, Atsushi OGINO
  • Publication number: 20190181215
    Abstract: Device structures and fabrication methods for an on-chip resistor. A resistor body is formed on an interlayer dielectric layer of a contact level. A contact is formed that extends vertically through the interlayer dielectric layer. One or more dielectric layers are formed over the contact level, and a metal feature is formed in the one or more dielectric layers. The metal feature is at least in part in direct contact with a portion of the resistor body.
    Type: Application
    Filed: December 7, 2017
    Publication date: June 13, 2019
    Inventors: Atsushi Ogino, Lin Hu, Brian Greene
  • Patent number: 10229918
    Abstract: Devices and methods of fabricating integrated circuit devices using semi-bidirectional patterning are provided. One method includes, for instance: obtaining an intermediate semiconductor device having a dielectric layer, a first, a second, and a third hardmask layer, and a lithography stack; patterning a first set of lines; patterning a second set of lines between the first set of lines; etching to define a combination of the first and second set of lines; depositing a second lithography stack; patterning a third set of lines in a direction perpendicular to the first and second set of lines; etching to define the third set of lines, leaving an OPL; depositing a spacer over the OPL; etching the spacer, leaving a vertical set of spacers; and etching the second hardmask layer using the third hardmask layer and the set of vertical spacers as masks.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: March 12, 2019
    Assignee: GLOBALFOUNDRIES Inc.
    Inventor: Atsushi Ogino
  • Patent number: 10147783
    Abstract: Structures for an on-chip capacitor and methods of forming an on-chip capacitor. A metal terminal is formed that has a side edge. Metal fingers are formed that have a parallel arrangement. Floating islands comprised of a metal are formed and are electrically isolated from the metal fingers. Each of the metal fingers has an end and extends from the side edge of the metal terminal toward the end. Each of the floating islands is arranged in a spaced relationship with the end of a respective one of the metal fingers.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: December 4, 2018
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Atsushi Ogino, Vikrant Chauhan, Kong Boon Yeap, Ahmed Hassan