Patents by Inventor Atsushi Shimura

Atsushi Shimura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10957962
    Abstract: A magnetoresistive effect device includes an input port, an input-side signal line, an MR unit including a magnetoresistive effect element and a magnetic-field generating signal line, and an output unit including a magnetoresistive effect element, an output-side signal line, and an output port. The magnetoresistive effect device further includes a DC application terminal. The magnetoresistive effect element is connected to the output port via the output-side signal line in the output unit. The input-side signal line is arranged so that a high frequency magnetic field generated from the input-side signal line is applied to the magnetoresistive effect element in the MR unit. In the MR unit, the magnetoresistive effect element is connected to the magnetic-field generating signal line. The magnetic-field generating signal line is arranged so that a high-frequency magnetic field generated from magnetic-field generating signal line is applied to the magnetoresistive effect element in the output unit.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: March 23, 2021
    Assignee: TDK CORPORATION
    Inventors: Takekazu Yamane, Tetsuya Shibata, Tsuyoshi Suzuki, Junichiro Urabe, Atsushi Shimura
  • Patent number: 10629806
    Abstract: The magnetoresistance effect device includes first and second ports, a first circuit unit and a second circuit unit connected between the first port and the second port, a shared reference electric potential terminal or a first reference electric potential terminal and a second reference electric potential terminal, and a shared DC application terminal or a first DC application terminal and a second DC application terminal, the first circuit unit includes a first magnetoresistance effect element, the second circuit unit includes a second magnetoresistance effect element and a first conductor separated from the second magnetoresistance effect element with an insulating body therebetween and a first end portion of the first conductor is connected to an input side of high frequency current such that high frequency magnetic field generated by the high frequency current flowing through the first conductor is applied to the magnetization free layer of the second magnetoresistance effect element.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: April 21, 2020
    Assignee: TDK CORPORATION
    Inventors: Tsuyoshi Suzuki, Shinji Hara, Atsushi Shimura
  • Patent number: 10608309
    Abstract: A magnetoresistance effect device includes a first port, a second port, a magnetoresistance effect element, a first signal line that is connected to the first port and applies a high-frequency magnetic field to the magnetoresistance effect element, a second signal line that connects the second port to the magnetoresistance effect element, and a direct current application terminal that is connected to a power source configured to apply a direct current or a direct voltage in a lamination direction of the magnetoresistance effect element. The first signal line includes a plurality of high-frequency magnetic field application areas capable of applying a high-frequency magnetic field to the magnetoresistance effect element, and the plurality of high-frequency magnetic field application areas in the first signal line are disposed at positions at which high-frequency magnetic fields generated in the high-frequency magnetic field application areas reinforce each other in the magnetoresistance effect element.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: March 31, 2020
    Assignee: TDK CORPORATION
    Inventors: Takekazu Yamane, Junichiro Urabe, Tsuyoshi Suzuki, Atsushi Shimura
  • Patent number: 10483458
    Abstract: A magnetoresistive effect device including a magnetoresistive effect element with which a high-frequency filter can be realized is provided. Magnetoresistive effect device includes: at least one magnetoresistive effect element including a magnetization fixed layer, spacer layer, and magnetization free layer in which magnetization direction is changeable; first and second port; signal line; and direct-current input terminal. First and second ports are connected to each other via signal line. Magnetoresistive effect element is connected to signal line and is to be connected to ground in parallel to second port. Direct-current input terminal is connected to signal line. A closed circuit including magnetoresistive effect element, signal line, ground, and direct-current input terminal is to be formed.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: November 19, 2019
    Assignee: TDK CORPORATION
    Inventors: Junichiro Urabe, Tetsuya Shibata, Atsushi Shimura, Takekazu Yamane, Tsuyoshi Suzuki
  • Patent number: 10381997
    Abstract: A high-frequency filter includes at least one magnetoresistive effect element; a first port through which a high-frequency signal is input; a second port through which a high-frequency signal is output; and a signal line.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: August 13, 2019
    Assignee: TDK CORPORATION
    Inventors: Tetsuya Shibata, Junichiro Urabe, Atsushi Shimura, Takekazu Yamane
  • Publication number: 20190245254
    Abstract: A magnetoresistive effect device includes an input port, an input-side signal line, an MR unit including a magnetoresistive effect element and a magnetic-field generating signal line, and an output unit including a magnetoresistive effect element, an output-side signal line, and an output port. The magnetoresistive effect device further includes a DC application terminal. The magnetoresistive effect element is connected to the output port via the output-side signal line in the output unit. The input-side signal line is arranged so that a high frequency magnetic field generated from the input-side signal line is applied to the magnetoresistive effect element in the MR unit. In the MR unit, the magnetoresistive effect element is connected to the magnetic-field generating signal line. The magnetic-field generating signal line is arranged so that a high-frequency magnetic field generated from magnetic-field generating signal line is applied to the magnetoresistive effect element in the output unit.
    Type: Application
    Filed: October 23, 2017
    Publication date: August 8, 2019
    Applicant: TDK CORPORATION
    Inventors: Takekazu YAMANE, Tetsuya SHIBATA, Tsuyoshi SUZUKI, Junichiro URABE, Atsushi SHIMURA
  • Publication number: 20190237663
    Abstract: The magnetoresistance effect device includes first and second ports, a first circuit unit and a second circuit unit connected between the first port and the second port, a shared reference electric potential terminal or a first reference electric potential terminal and a second reference electric potential terminal, and a shared DC application terminal or a first DC application terminal and a second DC application terminal, the first circuit unit includes a first magnetoresistance effect element, the second circuit unit includes a second magnetoresistance effect element and a first conductor separated from the second magnetoresistance effect element with an insulating body therebetween and a first end portion of the first conductor is connected to an input side of high frequency current such that high frequency magnetic field generated by the high frequency current flowing through the first conductor is applied to the magnetization free layer of the second magnetoresistance effect element.
    Type: Application
    Filed: January 30, 2019
    Publication date: August 1, 2019
    Applicant: TDK CORPORATION
    Inventors: Tsuyoshi SUZUKI, Shinji HARA, Atsushi SHIMURA
  • Patent number: 10332666
    Abstract: The magnetoresistance effect device includes: a first port; a second port; a magnetoresistance effect element; a first signal line that is connected to the first port and applies a high frequency magnetic field to the magnetoresistance effect element; a second signal line that connects the second port and the magnetoresistance effect element to each other; and a direct current application terminal capable of being connected to a power supply that applies a direct current or a direct current voltage. The first signal line includes a magnetic field generator, which extends in a first direction, at a position in the lamination direction of the magnetoresistance effect element or an in-plane direction that is orthogonal to the lamination direction, and the magnetic field generator and the magnetoresistance effect element include an overlapping portion as viewed from the lamination direction in which the magnetic field generator is disposed, or the in-plane direction.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: June 25, 2019
    Assignee: TDK CORPORATION
    Inventors: Takekazu Yamane, Junichiro Urabe, Tsuyoshi Suzuki, Atsushi Shimura
  • Publication number: 20180315535
    Abstract: The magnetoresistance effect device includes: a first port; a second port; a magnetoresistance effect element; a first signal line that is connected to the first port and applies a high frequency magnetic field to the magnetoresistance effect element; a second signal line that connects the second port and the magnetoresistance effect element to each other; and a direct current application terminal capable of being connected to a power supply that applies a direct current or a direct current voltage. The first signal line includes a magnetic field generator, which extends in a first direction, at a position in the lamination direction of the magnetoresistance effect element or an in-plane direction that is orthogonal to the lamination direction, and the magnetic field generator and the magnetoresistance effect element include an overlapping portion as viewed from the lamination direction in which the magnetic field generator is disposed, or the in-plane direction.
    Type: Application
    Filed: April 25, 2018
    Publication date: November 1, 2018
    Applicant: TDK CORPORATION
    Inventors: Takekazu YAMANE, Junichiro URABE, Tsuyoshi SUZUKI, Atsushi SHIMURA
  • Publication number: 20180316077
    Abstract: A magnetoresistance effect device includes a first port, a second port, a magnetoresistance effect element, a first signal line that is connected to the first port and applies a high-frequency magnetic field to the magnetoresistance effect element, a second signal line that connects the second port to the magnetoresistance effect element, and a direct current application terminal that is connected to a power source configured to apply a direct current or a direct voltage in a lamination direction of the magnetoresistance effect element. The first signal line includes a plurality of high-frequency magnetic field application areas capable of applying a high-frequency magnetic field to the magnetoresistance effect element, and the plurality of high-frequency magnetic field application areas in the first signal line are disposed at positions at which high-frequency magnetic fields generated in the high-frequency magnetic field application areas reinforce each other in the magnetoresistance effect element.
    Type: Application
    Filed: April 25, 2018
    Publication date: November 1, 2018
    Applicant: TDK CORPORATION
    Inventors: Takekazu YAMANE, Junichiro URABE, Tsuyoshi SUZUKI, Atsushi SHIMURA
  • Publication number: 20180309046
    Abstract: Magnetoresistive effect device including magnetoresistive effect element which high-frequency filter can be realized is provided. Magnetoresistive effect device includes: at least one magnetoresistive effect element including magnetization fixed, spacer, and magnetization free layer wherein magnetization direction is changeable; first and second ports; signal line; and direct-current input terminal. First and second ports are connected to each other via signal line. Magnetoresistive effect element is connected to signal line and is to be connected to ground in parallel to second port. Direct-current input terminal is connected to signal line. Closed circuit including magnetoresistive effect element, signal line, ground, and direct-current input terminal is to be formed. Magnetoresistive effect element is arranged wherein direct current input from direct-current input terminal flows through magnetoresistive effect element in direction from magnetization fixed layer to magnetization free layer.
    Type: Application
    Filed: June 2, 2016
    Publication date: October 25, 2018
    Applicant: TDK CORPORATION
    Inventors: Junichiro URABE, Tetsuya SHIBATA, Atsushi SHIMURA, Takekazu YAMANE, Tsuyoshi SUZUKI
  • Publication number: 20180277749
    Abstract: A magnetoresistive effect device including a magnetoresistive effect element with which a high-frequency filter can be realized is provided. Magnetoresistive effect device includes: at least one magnetoresistive effect element including a magnetization fixed layer, spacer layer, and magnetization free layer in which magnetization direction is changeable; first and second port; signal line; and direct-current input terminal. First and second ports are connected to each other via signal line. Magnetoresistive effect element is connected to signal line and is to be connected to ground in parallel to second port. Direct-current input terminal is connected to signal line. A closed circuit including magnetoresistive effect element, signal line, ground, and direct-current input terminal is to be formed.
    Type: Application
    Filed: June 2, 2016
    Publication date: September 27, 2018
    Applicant: TDK CORPORATION
    Inventors: Junichiro URABE, Tetsuya SHIBATA, Atsushi SHIMURA, Takekazu YAMANE, Tsuyoshi SUZUKI
  • Patent number: 10074688
    Abstract: A magnetoresistive effect device includes a first magnetoresistive effect element, a second magnetoresistive effect element, a first port, a second port, a signal line, and a direct-current input terminal. The first port, the first magnetoresistive effect element, and the second port are connected in series to each other in this order via the signal line. The second magnetoresistive effect element is connected to the signal line in parallel with the second port. The first magnetoresistive effect element and the second magnetoresistive effect element are formed so that the relationship between the direction of direct current that is input from the direct-current input terminal and that flows through the first magnetoresistive effect element and the order of arrangement of a magnetization fixed layer, a spacer layer, and a magnetization free layer in the first magnetoresistive effect element is opposite to the above relationship in the second magnetoresistive effect element.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: September 11, 2018
    Assignee: TDK CORPORATION
    Inventors: Tetsuya Shibata, Tsuyoshi Suzuki, Junichiro Urabe, Takekazu Yamane, Atsushi Shimura
  • Publication number: 20180159492
    Abstract: A high-frequency filter includes at least one magnetoresistive effect element; a first port through which a high-frequency signal is input; a second port through which a high-frequency signal is output; and a signal line.
    Type: Application
    Filed: January 12, 2018
    Publication date: June 7, 2018
    Applicant: TDK CORPORATION
    Inventors: Tetsuya SHIBATA, Junichiro URABE, Atsushi SHIMURA, Takekazu YAMANE
  • Patent number: 9948267
    Abstract: A magnetoresistive effect device includes at least one magnetoresistive effect element including a magnetization fixed layer, a spacer layer, and a magnetization free layer, a first port, a second port, a first signal line which is connected to the first port and through which high-frequency current corresponding to a high-frequency signal input into the first port flows, a second signal line, and a direct-current input terminal. The magnetoresistive effect element is arranged so that a high-frequency magnetic field occurring from the first signal line is applied to the magnetization free layer. The magnetoresistive effect element is connected to the second port via the second signal line. The direct-current input terminal is connected to the magnetoresistive effect element.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: April 17, 2018
    Assignee: TDK CORPORATION
    Inventors: Takekazu Yamane, Tetsuya Shibata, Junichiro Urabe, Atsushi Shimura
  • Patent number: 9906199
    Abstract: A magnetoresistive effect device includes a magnetoresistive effect element including a magnetization fixed layer, a spacer layer, and a magnetization free layer; a first port; a second port; a signal line; an impedance element; and a direct-current input terminal. The first port, the magnetoresistive effect element, and the second port are connected in series in this order via the signal line. The impedance element is connected to ground and to the signal line between the magnetoresistive effect element and the first port or the second port. The direct-current input terminal is connected to the signal line at the opposite side to the impedance element with the magnetoresistive effect element in between the direct-current input terminal and the impedance element. A closed circuit including the magnetoresistive effect element, the signal line, the impedance element, the ground, and the direct-current input terminal is to be formed.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: February 27, 2018
    Assignee: TDK CORPORATION
    Inventors: Tetsuya Shibata, Junichiro Urabe, Atsushi Shimura, Takekazu Yamane
  • Publication number: 20180040666
    Abstract: A magnetoresistive effect device includes a first magnetoresistive effect element, a second magnetoresistive effect element, a first port, a second port, a signal line, and a direct-current input terminal. The first port, the first magnetoresistive effect element, and the second port are connected in series to each other in this order via the signal line. The second magnetoresistive effect element is connected to the signal line in parallel with the second port. The first magnetoresistive effect element and the second magnetoresistive effect element are formed so that the relationship between the direction of direct current that is input from the direct-current input terminal and that flows through the first magnetoresistive effect element and the order of arrangement of a magnetization fixed layer, a spacer layer, and a magnetization free layer in the first magnetoresistive effect element is opposite to the above relationship in the second magnetoresistive effect element.
    Type: Application
    Filed: July 28, 2017
    Publication date: February 8, 2018
    Applicant: TDK CORPORATION
    Inventors: Tetsuya SHIBATA, Tsuyoshi SUZUKI, Junichiro URABE, Takekazu YAMANE, Atsushi SHIMURA
  • Publication number: 20170244377
    Abstract: A magnetoresistive effect device includes at least one magnetoresistive effect element including a magnetization fixed layer, a spacer layer, and a magnetization free layer, a first port, a second port, a first signal line which is connected to the first port and through which high-frequency current corresponding to a high-frequency signal input into the first port flows, a second signal line, and a direct-current input terminal. The magnetoresistive effect element is arranged so that a high-frequency magnetic field occurring from the first signal line is applied to the magnetization free layer. The magnetoresistive effect element is connected to the second port via the second signal line. The direct-current input terminal is connected to the magnetoresistive effect element.
    Type: Application
    Filed: February 22, 2017
    Publication date: August 24, 2017
    Applicant: TDK CORPORATION
    Inventors: Takekazu YAMANE, Tetsuya SHIBATA, Junichiro URABE, Atsushi SHIMURA
  • Publication number: 20160277000
    Abstract: A magnetoresistive effect device includes a magnetoresistive effect element including a magnetization fixed layer, a spacer layer, and a magnetization free layer; a first port; a second port; a signal line; an impedance element; and a direct-current input terminal. The first port, the magnetoresistive effect element, and the second port are connected in series in this order via the signal line. The impedance element is connected to ground and to the signal line between the magnetoresistive effect element and the first port or the second port. The direct-current input terminal is connected to the signal line at the opposite side to the impedance element with the magnetoresistive effect element in between the direct-current input terminal and the impedance element. A closed circuit including the magnetoresistive effect element, the signal line, the impedance element, the ground, and the direct-current input terminal is to be formed.
    Type: Application
    Filed: March 10, 2016
    Publication date: September 22, 2016
    Applicant: TDK CORPORATION
    Inventors: Tetsuya SHIBATA, Junichiro URABE, Atsushi SHIMURA, Takekazu YAMANE
  • Patent number: 9082012
    Abstract: An eye state detection apparatus includes a camera, a first calculator, a memory, a second calculator, and a third calculator. The camera obtains a plurality of face images of a driver. The first calculator calculates an opening amount of an eye of the driver based on each face image. The memory stores the opening amounts calculated by the first calculator. The second calculator groups the opening amounts into a plurality of groups in a sequential manner, calculates a group distribution of each group, calculates an entire distribution of all of the opening amounts, and sets the entire distribution as a reference distribution when a difference among the group distributions is within a predetermined range. The third calculator calculates an opening degree of the eye based on the reference distribution of the opening amounts when the reference distribution of the opening amounts is calculated by the second calculator.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: July 14, 2015
    Assignee: DENSO CORPORATION
    Inventor: Atsushi Shimura