Patents by Inventor Atsushi Soma

Atsushi Soma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210017635
    Abstract: The steel material according to the present disclosure contains a chemical composition consisting of, in mass %, C: 0.20 to 0.50%, Si: 0.05 to 0.50%, Mn: 0.05 to 1.00%, P: 0.030% or less, S: 0.0100% or less, Al: 0.005 to 0.100%, Cr: 0.10 to 1.50%, Mo: 0.25 to 1.50%, Ti: 0.002 to 0.050%, N: 0.0100% or less and O: 0.0100% or less, with the balance being Fe and impurities. The steel material contains an amount of dissolved C within a range of 0.010 to 0.050 mass %. The steel material also has a yield strength within a range of 655 to less than 862 MPa, and a yield ratio of the steel material is 85% or more.
    Type: Application
    Filed: March 25, 2019
    Publication date: January 21, 2021
    Inventors: Hiroki KAMITANI, Atsushi SOMA, Shinji YOSHIDA, Yuji ARAI, Seiya OKADA
  • Publication number: 20210010099
    Abstract: The steel material according to the present disclosure contains a chemical composition consisting of, in mass %, C: 0.20 to 0.50%, Si: 0.05 to 1.00%, Mn: 0.05 to 1.00%, P: 0.025% or less, S: 0.0100% or less, Al: 0.005 to 0.100%, Cr: 0.20 to 1.50%, Mo: 0.25 to 1.50%, Ti: 0.002 to 0.050%, B: 0.0001 to 0.0050%, N: 0.0100% or less and O: 0.0100% or less, with the balance being Fe and impurities. The steel material contains an amount of dissolved C within a range of 0.010 to 0.050 mass %. The steel material also has a yield strength within a range of 965 to 1069 MPa, and a yield ratio of the steel material is 90% or more.
    Type: Application
    Filed: March 22, 2019
    Publication date: January 14, 2021
    Inventors: Shinji YOSHIDA, Yuji ARAI, Atsushi SOMA, Hiroki KAMITANI
  • Publication number: 20200040436
    Abstract: The steel material according to the present invention contains a chemical composition consisting of, in mass %, C: 0.25 to 0.50%, Si: 0.05 to 0.50%, Mn: 0.05 to 1.00%, P: 0.025% or less, S: 0.0100% or less, Al: 0.005 to 0.100%, Cr: 0.30 to 1.50%, Mo: 0.25 to 1.50%, Ti: 0.002 to 0.050%, B: 0.0001 to 0.0050%, N: 0.002 to 0.010% and O: 0.0100% or less, with the balance being Fe and impurities. The steel material also contains an amount of dissolved C within a range of 0.010 to 0.050 mass %. The steel material also contains an yield strength is in a range of 862 to less than 965 MPa, and an yield ratio is 90% or more.
    Type: Application
    Filed: October 6, 2017
    Publication date: February 6, 2020
    Inventors: Yuji Arai, Shinji Yoshida, Atsushi Soma, Hiroki Kamitani
  • Publication number: 20190376167
    Abstract: The steel material according to the present disclosure contains a chemical composition consisting of, in mass %, C: more than 0.50 to 0.80%, Si: 0.05 to 1.00%, Mn: 0.05 to 1.00%, P: 0.025% or less, S: 0.0100% or less, Al: 0.005 to 0.100%, Cr: 0.20 to 1.50%, Mo: 0.25 to 1.50%, Ti: 0.002 to 0.050%, B: 0.0001 to 0.0050%, N: 0.002 to 0.010% and O: 0.0100% or less, with the balance being Fe and impurities. The steel material contains an amount of dissolved C within a range of 0.010 to 0.060 mass %. The steel material also has a yield strength within a range of 965 to 1069 MPa, and a yield ratio of the steel material is 90% or more.
    Type: Application
    Filed: January 22, 2018
    Publication date: December 12, 2019
    Inventors: Shinji Yoshida, Yuji Arai, Atsushi Soma, Hiroki Kamitani
  • Publication number: 20190300979
    Abstract: The seamless steel pipe of the present embodiment consists of in mass %, C: 0.21 to 0.35%, Si: 0.10 to 0.50%, Mn: 0.05 to 1.00%, P: 0.025% or less, S: 0.010% or less, Al: 0.005 to 0.100%, N: 0.010% or less, Cr: 0.05 to 1.50%, Mo: 0.10 to 1.50%, Nb: 0.010 to 0.050%, B: 0.0003 to 0.0050%, and Ti: 0.002 to 0.050%, the balance being Fe and impurities. In a main body region of the seamless steel pipe, a grain size number of prior-austenite grain conforming to ASTM E112 is 7.0 or more, a difference between a maximum value and a minimum value of the grain size number is 1.0 or less, yield strength is 655 to less than 862 MPa, and a difference between a maximum value and a minimum value of tensile strength is 27.6 MPa or less.
    Type: Application
    Filed: May 18, 2017
    Publication date: October 3, 2019
    Inventors: Atsushi Soma, Yuji Arai, Yosuke Tatebayashi, Keisuke Furo, Takenori Kuramoto, Hiroki Kamitani, Kouji Yamane
  • Patent number: 10233520
    Abstract: A low-alloy steel pipe includes C: 0.15% to less than 0.30%, Si: 0.05 to 1.00%, Mn: 0.05 to 1.00%, P: at most 0.030%, S: at most 0.0050%, Al: 0.005 to 0.100%, O: at most 0.005%, N: at most 0.007%, Cr: 0.10% to less than 1.00%, Mo: 1.0% to not more than 2.5%, V: 0.01 to 0.30%, Ti: 0.002 to 0.009%. Nb: 0 to 0.050%, B: 0 to 0.0050%, Ca: 0 to 0.0050%, Mo/Cr?2.0, and the balance being Fe and impurities. The pipe has a crystal grain size number of 7.0 or more, 50 or more particles of cementite based on equivalent circle diameter and area of the matrix, M2C-based alloy carbide in a number density of not less than 25/?m2, and a yield strength of 758 MPa or more.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: March 19, 2019
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Atsushi Soma, Yuji Arai
  • Patent number: 9777352
    Abstract: To provide an oil-well steel pipe having excellent SSC resistance. The oil-well steel pipe according to the present invention contains, by mass percent, C: 0.15 to 0.35%, Si: 0.1 to 0.75%, Mn: 0.1 to 1.0%, Cr: 0.1 to 1.7%, Mo: 0.1 to 1.2%, Ti: 0.01 to 0.05%, Nb: 0.010 to 0.030%, Al: 0.01 to 0.1%, P: at most 0.03%, S: at most 0.01%, N: at most 0.007%, and O: at most 0.01%, the balance being Fe and impurities. The Ti content and the Nb content in a residue obtained by bromine-methanol extraction satisfy equation (1): 100×[Nb]/([Ti]+[Nb])?27.5??(1) where the Ti content (mass %) and the Nb content (mass %) in the residue are substituted for [Ti] and [Nb].
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: October 3, 2017
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Atsushi Soma, Tomohiko Omura, Yuji Arai, Mitsuhiro Numata, Toru Takayama, Masanao Seo
  • Publication number: 20170081746
    Abstract: A low-alloy steel pipe includes C: 0.15% to less than 0.30%, Si: 0.05 to 1.00%, Mn: 0.05 to 1.00%, P: at most 0.030%, S: at most 0.0050%, Al: 0.005 to 0.100%, 0: at most 0.005%, N: at most 0.007%, Cr: 0.10% to less than 1.00%, Mo: 1.0% to not more than 2.5%, V: 0.01 to 0.30%, Ti: 0.002 to 0.009%. Nb: 0 to 0.050%, B: 0 to 0.0050%, Ca: 0 to 0.0050%, Mo/Cr?2.0, and the balance being Fe and impurities. The pipe has a crystal grain size number of 7.0 or more, 50 or more particles of cementite based on equivalent circle diameter and area of the matrix, M2C-based alloy carbide in a number density of not less than 25/?m2, and a yield strength of 758 MPa or more.
    Type: Application
    Filed: June 4, 2015
    Publication date: March 23, 2017
    Inventors: Atsushi SOMA, Yuji ARAI
  • Patent number: 9175371
    Abstract: The present invention provides a steel which simultaneously satisfies a plurality of characteristics, specifically, a steel for tubes with excellent sulfide stress cracking resistance, including, C: 0.2 to 0.7%; Si: 0.01 to 0.8%; Mn: 0.1 to 1.5%; S: not more than 0.005%; P: not more than 0.03%; Al: 0.0005 to 0.1%; Ti: 0.005 to 0.05%; Ca: 0.0004 to 0.005%; N: not more than 0.007%; Cr: 0.1 to 1.5%; and Mo: 0.2 to 1.0%; the balance being Fe, Mg and impurities, being characterized in that: the content of Mg is not less than 1.0 ppm and not more than 5.0 ppm; and inclusions of not less than 50% of the total number of those in steel have such a morphology that Mg—Al—O-based oxides exist at the central part of the inclusion, Ca—Al-based oxides enclose the Mg—Al—O-based oxides, and Ti-containing-carbonitrides further exist on a periphery of the Ca—Al-based oxides.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: November 3, 2015
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Mitsuhiro Numata, Tomohiko Omura, Masayuki Morimoto, Toru Takayama, Atsushi Soma
  • Publication number: 20140205487
    Abstract: To provide an oil-well steel pipe having excellent SSC resistance. The oil-well steel pipe according to the present invention contains, by mass percent, C: 0.15 to 0.35%, Si: 0.1 to 0.75%, Mn: 0.1 to 1.0%, Cr: 0.1 to 1.7%, Mo: 0.1 to 1.2%, Ti: 0.01 to 0.05%, Nb: 0.010 to 0.030%, Al: 0.01 to 0.1%, P: at most 0.03%, S: at most 0.01%, N: at most 0.007%, and O: at most 0.01%, the balance being Fe and impurities. The Ti content and the Nb content in a residue obtained by bromine-methanol extraction satisfy equation (1): 100×[Nb]/([Ti]+[Nb])?27.5??(1) where the Ti content (mass %) and the Nb content (mass %) in the residue are substituted for [Ti] and [Nb].
    Type: Application
    Filed: August 17, 2012
    Publication date: July 24, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Atsushi Soma, Tomohiko Omura, Yuji Arai, Misuhiro Numata, Toru Takayama, Masanao Seo
  • Publication number: 20130084205
    Abstract: The present invention provides a steel which simultaneously satisfies a plurality of characteristics, specifically, a steel for tubes with excellent sulfide stress cracking resistance, including, C: 0.2 to 0.7%; Si: 0.01 to 0.8%; Mn: 0.1 to 1.5%; S: not more than 0.005%; P: not more than 0.03%; Al: 0.0005 to 0.1%; Ti: 0.005 to 0.05%; Ca: 0.0004 to 0.005%; N: not more than 0.007%; Cr: 0. 1 to 1.5%; and Mo: 0.2 to 1.0%; the balance being Fe, Mg and impurities, being characterized in that: the content of Mg is not less than 1.0 ppm and not more than 5.0 ppm; and inclusions of not less than 50% of the total number of those in steel have such a morphology that Mg—Al—O-based oxides exist at the central part of the inclusion, Ca—Al-based oxides enclose the Mg—Al—O-based oxides, and Ti-containing-carbonitrides further exist on a periphery of the Ca—Al-based oxides.
    Type: Application
    Filed: May 25, 2011
    Publication date: April 4, 2013
    Applicant: NIPPON STEEL & SUMMITOMA METALCORPORATION
    Inventors: Mitsuhiro Numata, Tomohiko Omura, Masayuki Morimoto, Toru Takayama, Atsushi Soma