Patents by Inventor Atsushi Yoshinouchi
Atsushi Yoshinouchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20150348781Abstract: A laser annealing method for executing laser annealing by irradiating a semiconductor film formed on a surface of a substrate with a laser beam, the method including the steps of, generating a linearly polarized rectangular laser beam whose cross section perpendicular to an advancing direction is a rectangle with an electric field directed toward a long-side direction of the rectangle or an elliptically polarized rectangular laser beam having a major axis directed toward a long-side direction, causing the rectangular laser beam to be introduced to the surface of the substrate, and setting a wavelength of the rectangular laser beam to a length which is about a desired size of a crystal grain in a standing wave direction.Type: ApplicationFiled: June 8, 2015Publication date: December 3, 2015Inventors: Ryusuke KAWAKAMI, Kenichiro NISHIDA, Norihito KAWAGUCHI, Miyuki MASAKI, Atsushi YOSHINOUCHI
-
Patent number: 9058994Abstract: A laser annealing method for executing laser annealing by irradiating a semiconductor film formed on a surface of a substrate with a laser beam, the method including the steps of, generating a linearly polarized rectangular laser beam whose cross section perpendicular to an advancing direction is a rectangle with an electric field directed toward a long-side direction of the rectangle or an elliptically polarized rectangular laser beam having a major axis directed toward a long-side direction, causing the rectangular laser beam to be introduced to the surface of the substrate, and setting a wavelength of the rectangular laser beam to a length which is about a desired size of a crystal grain in a standing wave direction.Type: GrantFiled: December 23, 2013Date of Patent: June 16, 2015Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Ryusuke Kawakami, Kenichirou Nishida, Norihito Kawaguchi, Miyuki Masaki, Atsushi Yoshinouchi
-
Publication number: 20140213071Abstract: A laser annealing method for executing laser annealing by irradiating a semiconductor film formed on a surface of a substrate with a laser beam, the method including the steps of, generating a linearly polarized rectangular laser beam whose cross section perpendicular to an advancing direction is a rectangle with an electric field directed toward a long-side direction of the rectangle or an elliptically polarized rectangular laser beam having a major axis directed toward a long-side direction, causing the rectangular laser beam to be introduced to the surface of the substrate, and setting a wavelength of the rectangular laser beam to a length which is about a desired size of a crystal grain in a standing wave direction.Type: ApplicationFiled: December 23, 2013Publication date: July 31, 2014Applicant: Semiconductor Energy Laboratory Co., Ltd.Inventors: Ryusuke KAWAKAMI, Kenichirou NISHIDA, Norihito KAWAGUCHI, Miyuki MASAKI, Atsushi YOSHINOUCHI
-
Patent number: 8629522Abstract: A laser annealing method for executing laser annealing by irradiating a semiconductor film formed on a surface of a substrate with a laser beam, the method including the steps of, generating a linearly polarized rectangular laser beam whose cross section perpendicular to an advancing direction is a rectangle with an electric field directed toward a long-side direction of the rectangle or an elliptically polarized rectangular laser beam having a major axis directed toward a long-side direction, causing the rectangular laser beam to be introduced to the surface of the substrate, and setting a wavelength of the rectangular laser beam to a length which is about a desired size of a crystal grain in a standing wave direction.Type: GrantFiled: September 10, 2012Date of Patent: January 14, 2014Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Ryusuke Kawakami, Kenichirou Nishida, Norihito Kawaguchi, Miyuki Masaki, Atsushi Yoshinouchi
-
Publication number: 20130005123Abstract: A laser annealing method for executing laser annealing by irradiating a semiconductor film formed on a surface of a substrate with a laser beam, the method including the steps of, generating a linearly polarized rectangular laser beam whose cross section perpendicular to an advancing direction is a rectangle with an electric field directed toward a long-side direction of the rectangle or an elliptically polarized rectangular laser beam having a major axis directed toward a long-side direction, causing the rectangular laser beam to be introduced to the surface of the substrate, and setting a wavelength of the rectangular laser beam to a length which is about a desired size of a crystal grain in a standing wave direction.Type: ApplicationFiled: September 10, 2012Publication date: January 3, 2013Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.Inventors: Ryusuke KAWAKAMI, Kenichirou NISHIDA, Norihito KAWAGUCHI, Miyuki MASAKI, Atsushi YOSHINOUCHI
-
Patent number: 8299553Abstract: A laser annealing method for executing laser annealing by irradiating a semiconductor film formed on a surface of a substrate with a laser beam, the method including the steps of, generating a linearly polarized rectangular laser beam whose cross section perpendicular to an advancing direction is a rectangle with an electric field directed toward a long-side direction of the rectangle or an elliptically polarized rectangular laser beam having a major axis directed toward a long-side direction, causing the rectangular laser beam to be introduced to the surface of the substrate, and setting a wavelength of the rectangular laser beam to a length which is about a desired size of a crystal grain in a standing wave direction.Type: GrantFiled: November 15, 2010Date of Patent: October 30, 2012Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Ryusuke Kawakami, Kenichirou Nishida, Norihito Kawaguchi, Miyuki Masaki, Atsushi Yoshinouchi
-
Patent number: 8115137Abstract: In laser annealing using a solid state laser, a focus position of a minor axial direction of a rectangular beam is easily corrected depending on positional variation of a laser irradiated portion of a semiconductor film. By using a minor-axis condenser lens 29 condensing incident light in a minor axial direction and a projection lens 30 projecting light, which comes from the minor-axis condenser lens 29, onto a surface of a semiconductor film 3, laser beam 1 is condensed on the surface of the semiconductor film 3 in the minor axial direction of a rectangular beam. The positional variation of a vertical direction of the semiconductor film 3 in a laser irradiated portion of the semiconductor film 3 is detected by a positional variation detector 31, and the minor-axis condenser lens 29 is moved in an optical axis direction based on a value of the detection.Type: GrantFiled: June 12, 2008Date of Patent: February 14, 2012Assignee: IHI CorporationInventors: Norihito Kawaguchi, Ryusuke Kawakami, Kenichiro Nishida, Miyuki Masaki, Masaru Morita, Atsushi Yoshinouchi
-
Publication number: 20110114855Abstract: A laser annealing method for executing laser annealing by irradiating a semiconductor film formed on a surface of a substrate with a laser beam, the method including the steps of, generating a linearly polarized rectangular laser beam whose cross section perpendicular to an advancing direction is a rectangle with an electric field directed toward a long-side direction of the rectangle or an elliptically polarized rectangular laser beam having a major axis directed toward a long-side direction, causing the rectangular laser beam to be introduced to the surface of the substrate, and setting a wavelength of the rectangular laser beam to a length which is about a desired size of a crystal grain in a standing wave direction.Type: ApplicationFiled: November 15, 2010Publication date: May 19, 2011Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.Inventors: Ryusuke KAWAKAMI, Kenichirou NISHIDA, Norihito KAWAGUCHI, Miyuki MASAKI, Atsushi Yoshinouchi
-
Publication number: 20110086441Abstract: In laser annealing using a solid state laser, a focus position of a minor axial direction of a rectangular beam is easily corrected depending on positional variation of a laser irradiated portion of a semiconductor film. By using a minor-axis condenser lens 29 condensing incident light in a minor axial direction and a projection lens 30 projecting light, which comes from the minor-axis condenser lens 29, onto a surface of a semiconductor film 3, laser beam 1 is condensed on the surface of the semiconductor film 3 in the minor axial direction of a rectangular beam. The positional variation of a vertical direction of the semiconductor film 3 in a laser irradiated portion of the semiconductor film 3 is detected by a positional variation detector 31, and the minor-axis condenser lens 29 is moved in an optical axis direction based on a value of the detection.Type: ApplicationFiled: June 12, 2008Publication date: April 14, 2011Applicant: IHI CORPORATIONInventors: Norihito KAWAGUCHI, Ryusuke KAWAKAMI, Kenichiro NISHIDA, Miyuki MASAKI, Masaru MORITA, Atsushi YOSHINOUCHI
-
Patent number: 7833871Abstract: A laser annealing method for executing laser annealing by irradiating a semiconductor film formed on a surface of a substrate with a laser beam, the method including the steps of, generating a linearly polarized rectangular laser beam whose cross section perpendicular to an advancing direction is a rectangle with an electric field directed toward a long-side direction of the rectangle or an elliptically polarized rectangular laser beam having a major axis directed toward a long-side direction, causing the rectangular laser beam to be introduced to the surface of the substrate, and setting a wavelength of the rectangular laser beam to a length which is about a desired size of a crystal grain in a standing wave direction.Type: GrantFiled: September 12, 2006Date of Patent: November 16, 2010Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Ryusuke Kawakami, Kenichirou Nishida, Norihito Kawaguchi, Miyuki Masaki, Atsushi Yoshinouchi
-
Publication number: 20100022102Abstract: A laser annealing method for executing laser annealing by irradiating a semiconductor film formed on a surface of a substrate with a laser beam, the method including the steps of, generating a linearly polarized rectangular laser beam whose cross section perpendicular to an advancing direction is a rectangle with an electric field directed toward a long-side direction of the rectangle or an elliptically polarized rectangular laser beam having a major axis directed toward a long-side direction, causing the rectangular laser beam to be introduced to the surface of the substrate, and setting a wavelength of the rectangular laser beam to a length which is about a desired size of a crystal grain in a standing wave direction.Type: ApplicationFiled: September 12, 2006Publication date: January 28, 2010Applicants: IHI CORPORATION, Semiconductor Energy Laboratory Co., Ltd.Inventors: Ryusuke Kawakami, Kenichirou Nishida, Norihito Kawaguchi, Miyuki Masaki, Atsushi Yoshinouchi
-
Patent number: 7645677Abstract: A method for manufacturing semiconductor device according to the present invention comprises a first film forming step of forming, on a concave and convex portion formed by an element on a semiconductor substrate, an oxidation preventive layer which prevents permeation of moisture into the element; a second film forming step of forming, on this oxidation preventive layer, an expansion layer which can be oxidized and expanded by a heat treatment in an oxidation atmosphere; a third film forming step of forming, on this expansion layer, an insulating film which can be fluidized by the heat treatment in the oxidation atmosphere; and an expansion step of subjecting, to the heat treatment in the oxidation atmosphere, the semiconductor substrate on which the oxidation preventive layer, the expansion layer and the insulating film have been formed, to fluidize the insulating film and to oxidize and expand the expansion layer, thereby eliminating bubbles generated in the insulating film.Type: GrantFiled: May 28, 2004Date of Patent: January 12, 2010Assignee: Ishikawajima-Harima Heavy Industries Co., Ltd.Inventors: Tomoyuki Watanabe, Atsushi Yoshinouchi
-
Publication number: 20080160783Abstract: A method for manufacturing semiconductor device according to the present invention comprises a first film forming step of forming, on a concave and convex portion formed by an element on a semiconductor substrate, an oxidation preventive layer which prevents permeation of moisture into the element; a second film forming step of forming, on this oxidation preventive layer, an expansion layer which can be oxidized and expanded by a heat treatment in an oxidation atmosphere; a third film forming step of forming, on this expansion layer, an insulating film which can be fluidized by the heat treatment in the oxidation atmosphere; and an expansion step of subjecting, to the heat treatment in the oxidation atmosphere, the semiconductor substrate on which the oxidation preventive layer, the expansion layer and the insulating film have been formed, to fluidize the insulating film and to oxidize and expand the expansion layer, thereby eliminating bubbles generated in the insulating film.Type: ApplicationFiled: May 28, 2004Publication date: July 3, 2008Applicant: ISHIKAWAJIMA-HARIMA HEAVY INDUSTRIES CO., LTD.Inventors: Tomoyuki Watanabe, Atsushi Yoshinouchi
-
Patent number: 6890839Abstract: An object of the present invention is to provide a laser annealing method and apparatus capable of performing uniform beam emission. By means of the present invention, uniform beam application to a sample can be achieved because a linear cross-sectional configuration can be created in an optical system with a beam having a Gaussian distribution while areas of strong light intensity are avoided by rotating the beam from a laser light source at a prescribed angle by means of rotating means even when the beam pattern of the beam from the laser light source has a non-uniform intensity distribution.Type: GrantFiled: January 15, 2002Date of Patent: May 10, 2005Assignee: Ishikawajima-Harima Heavy Industries Co., Ltd.Inventors: Norihito Kawaguchi, Kenichiro Nishida, Mikito Ishii, Takehito Yagi, Miyuki Masaki, Atsushi Yoshinouchi, Koichiro Tanaka
-
Patent number: 6835675Abstract: A laser-irradiation method which comprises a process for fabricating a semiconductor device, comprising: a first step of forming a thin film amorphous semiconductor on a substrate having an insulating surface; a second step of modifying the thin film amorphous semiconductor into a crystalline thin film semiconductor by irradiating a pulse-type linear light and/or by applying a heat treatment; a third step of implanting an impurity element which imparts a one conductive type to the crystalline thin film semiconductor; and a fourth step of activating the impurity element by irradiating a pulse-type linear light and/or by applying a heat treatment; wherein the peak value, the peak width at half height, and the threshold width of the laser energy in the second and the fourth steps above are each distributed within a range of approximately ±3% of the standard value. Also claimed is a laser irradiation device which realizes the method above.Type: GrantFiled: December 10, 2002Date of Patent: December 28, 2004Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Shunpei Yamazaki, Satoshi Teramoto, Naoto Kusumoto, Takeshi Fukunaga, Setsuo Nakajima, Tadayoshi Miyamoto, Atsushi Yoshinouchi
-
Patent number: 6621636Abstract: A laser irradiation apparatus having a low running cost compared to the conventional, and a laser irradiation method using the laser irradiation apparatus, are provided. Crystal grains having a size in the same order as, or greater than, conventional grains are formed. The cooling speed of a semiconductor film is made slower, and it becomes possible to form crystal grains having a grain size in the same order as, or greater than, the size of grains formed in the case of irradiating laser light having a long output time to the semiconductor film. This is achieved by delaying one laser light with respect to another laser light, combining the laser lights, and performing irradiation to the semiconductor film in the case of irradiating laser light using a solid state laser as a light source, which has a short output time.Type: GrantFiled: December 21, 2001Date of Patent: September 16, 2003Assignees: Semiconductor Energy Laboratory Co., Ltd., Ishikawajima-Harima Heavy Industries, Co.Inventors: Koichiro Tanaka, Setsuo Nakajima, Takehito Yagi, Mikito Ishii, Kenichiro Nishida, Norihito Kawaguchi, Miyuki Masaki, Atsushi Yoshinouchi
-
Patent number: 6599790Abstract: A laser-irradiation method which comprises a process for fabricating a semiconductor device, comprising: a first step of forming a thin film amorphous semiconductor on a substrate having an insulating surface; a second step of modifying the thin film amorphous semiconductor into a crystalline thin film semiconductor by irradiating a pulse-type linear light and/or by applying a heat treatment; a third step of implanting an impurity element which imparts a one conductive type to the crystalline thin film semiconductor; and a fourth step of activating the impurity element by irradiating a pulse-type linear light and/or by applying a heat treatment; wherein the peak value, the peak width at half height, and the threshold width of the laser energy in the second and the fourth steps above are each distributed within a range of approximately ±3% of the standard value. Also claimed is a laser irradiation device which realizes the method above.Type: GrantFiled: February 13, 1997Date of Patent: July 29, 2003Assignee: Semiconductor Energy Laboratory Co., LtdInventors: Shunpei Yamazaki, Satoshi Teramoto, Naoto Kusumoto, Takeshi Fukunaga, Setsuo Nakajima, Tadayoshi Miyamoto, Atsushi Yoshinouchi
-
Publication number: 20030119287Abstract: A laser-irradiation method which comprises a process for fabricating a semiconductor device, comprising:Type: ApplicationFiled: December 10, 2002Publication date: June 26, 2003Applicant: Semiconductor Energy Laboratory Co. Ltd., a Japan corporationInventors: Shunpei Yamazaki, Satoshi Teramoto, Naoto Kusumoto, Takeshi Fukunaga, Setsuo Nakajima, Tadayoshi Miyamoto, Atsushi Yoshinouchi
-
Patent number: 6492213Abstract: A semiconductor device includes: a substrate; a line formed on the substrate; and a crystalline semiconductor film containing silicon connected to the line. The crystalline semiconductor film is crystallized by annealing where a constituting material of the line functions as a catalyst.Type: GrantFiled: February 11, 2000Date of Patent: December 10, 2002Assignee: Sharp Kabushiki KaishaInventors: Atsushi Yoshinouchi, Yasuaki Murata
-
Patent number: 6455359Abstract: A laser-irradiation method which comprises a process for fabricating a semiconductor device, comprising: a first step of forming a thin film amorphous semiconductor on a substrate having an insulating surface; a second step of modifying the thin film amorphous semiconductor into a crystalline thin film semiconductor by irradiating a pulse-type linear light and/or by applying a heat treatment; a third step of implanting an impurity element which imparts a one conductive type to the crystalline thin film semiconductor; and a fourth step of activating the impurity element by irradiating a pulse-type linear light and/or by applying a heat treatment; wherein the peak value, the peak width at half height, and the threshold width of the laser energy in the second and the fourth steps above are each distributed within a range of approximately ±3% of the standard value. Also claimed is a laser irradiation device which realizes the method above.Type: GrantFiled: April 22, 1999Date of Patent: September 24, 2002Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Shunpei Yamazaki, Satoshi Teramoto, Naoto Kusumoto, Takeshi Fukunaga, Setsuo Nakajima, Tadayoshi Miyamoto, Atsushi Yoshinouchi