Patents by Inventor Atsushi Yoshinouchi

Atsushi Yoshinouchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150348781
    Abstract: A laser annealing method for executing laser annealing by irradiating a semiconductor film formed on a surface of a substrate with a laser beam, the method including the steps of, generating a linearly polarized rectangular laser beam whose cross section perpendicular to an advancing direction is a rectangle with an electric field directed toward a long-side direction of the rectangle or an elliptically polarized rectangular laser beam having a major axis directed toward a long-side direction, causing the rectangular laser beam to be introduced to the surface of the substrate, and setting a wavelength of the rectangular laser beam to a length which is about a desired size of a crystal grain in a standing wave direction.
    Type: Application
    Filed: June 8, 2015
    Publication date: December 3, 2015
    Inventors: Ryusuke KAWAKAMI, Kenichiro NISHIDA, Norihito KAWAGUCHI, Miyuki MASAKI, Atsushi YOSHINOUCHI
  • Patent number: 9058994
    Abstract: A laser annealing method for executing laser annealing by irradiating a semiconductor film formed on a surface of a substrate with a laser beam, the method including the steps of, generating a linearly polarized rectangular laser beam whose cross section perpendicular to an advancing direction is a rectangle with an electric field directed toward a long-side direction of the rectangle or an elliptically polarized rectangular laser beam having a major axis directed toward a long-side direction, causing the rectangular laser beam to be introduced to the surface of the substrate, and setting a wavelength of the rectangular laser beam to a length which is about a desired size of a crystal grain in a standing wave direction.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: June 16, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Ryusuke Kawakami, Kenichirou Nishida, Norihito Kawaguchi, Miyuki Masaki, Atsushi Yoshinouchi
  • Publication number: 20140213071
    Abstract: A laser annealing method for executing laser annealing by irradiating a semiconductor film formed on a surface of a substrate with a laser beam, the method including the steps of, generating a linearly polarized rectangular laser beam whose cross section perpendicular to an advancing direction is a rectangle with an electric field directed toward a long-side direction of the rectangle or an elliptically polarized rectangular laser beam having a major axis directed toward a long-side direction, causing the rectangular laser beam to be introduced to the surface of the substrate, and setting a wavelength of the rectangular laser beam to a length which is about a desired size of a crystal grain in a standing wave direction.
    Type: Application
    Filed: December 23, 2013
    Publication date: July 31, 2014
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Ryusuke KAWAKAMI, Kenichirou NISHIDA, Norihito KAWAGUCHI, Miyuki MASAKI, Atsushi YOSHINOUCHI
  • Patent number: 8629522
    Abstract: A laser annealing method for executing laser annealing by irradiating a semiconductor film formed on a surface of a substrate with a laser beam, the method including the steps of, generating a linearly polarized rectangular laser beam whose cross section perpendicular to an advancing direction is a rectangle with an electric field directed toward a long-side direction of the rectangle or an elliptically polarized rectangular laser beam having a major axis directed toward a long-side direction, causing the rectangular laser beam to be introduced to the surface of the substrate, and setting a wavelength of the rectangular laser beam to a length which is about a desired size of a crystal grain in a standing wave direction.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: January 14, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Ryusuke Kawakami, Kenichirou Nishida, Norihito Kawaguchi, Miyuki Masaki, Atsushi Yoshinouchi
  • Publication number: 20130005123
    Abstract: A laser annealing method for executing laser annealing by irradiating a semiconductor film formed on a surface of a substrate with a laser beam, the method including the steps of, generating a linearly polarized rectangular laser beam whose cross section perpendicular to an advancing direction is a rectangle with an electric field directed toward a long-side direction of the rectangle or an elliptically polarized rectangular laser beam having a major axis directed toward a long-side direction, causing the rectangular laser beam to be introduced to the surface of the substrate, and setting a wavelength of the rectangular laser beam to a length which is about a desired size of a crystal grain in a standing wave direction.
    Type: Application
    Filed: September 10, 2012
    Publication date: January 3, 2013
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Ryusuke KAWAKAMI, Kenichirou NISHIDA, Norihito KAWAGUCHI, Miyuki MASAKI, Atsushi YOSHINOUCHI
  • Patent number: 8299553
    Abstract: A laser annealing method for executing laser annealing by irradiating a semiconductor film formed on a surface of a substrate with a laser beam, the method including the steps of, generating a linearly polarized rectangular laser beam whose cross section perpendicular to an advancing direction is a rectangle with an electric field directed toward a long-side direction of the rectangle or an elliptically polarized rectangular laser beam having a major axis directed toward a long-side direction, causing the rectangular laser beam to be introduced to the surface of the substrate, and setting a wavelength of the rectangular laser beam to a length which is about a desired size of a crystal grain in a standing wave direction.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: October 30, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Ryusuke Kawakami, Kenichirou Nishida, Norihito Kawaguchi, Miyuki Masaki, Atsushi Yoshinouchi
  • Patent number: 8115137
    Abstract: In laser annealing using a solid state laser, a focus position of a minor axial direction of a rectangular beam is easily corrected depending on positional variation of a laser irradiated portion of a semiconductor film. By using a minor-axis condenser lens 29 condensing incident light in a minor axial direction and a projection lens 30 projecting light, which comes from the minor-axis condenser lens 29, onto a surface of a semiconductor film 3, laser beam 1 is condensed on the surface of the semiconductor film 3 in the minor axial direction of a rectangular beam. The positional variation of a vertical direction of the semiconductor film 3 in a laser irradiated portion of the semiconductor film 3 is detected by a positional variation detector 31, and the minor-axis condenser lens 29 is moved in an optical axis direction based on a value of the detection.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: February 14, 2012
    Assignee: IHI Corporation
    Inventors: Norihito Kawaguchi, Ryusuke Kawakami, Kenichiro Nishida, Miyuki Masaki, Masaru Morita, Atsushi Yoshinouchi
  • Publication number: 20110114855
    Abstract: A laser annealing method for executing laser annealing by irradiating a semiconductor film formed on a surface of a substrate with a laser beam, the method including the steps of, generating a linearly polarized rectangular laser beam whose cross section perpendicular to an advancing direction is a rectangle with an electric field directed toward a long-side direction of the rectangle or an elliptically polarized rectangular laser beam having a major axis directed toward a long-side direction, causing the rectangular laser beam to be introduced to the surface of the substrate, and setting a wavelength of the rectangular laser beam to a length which is about a desired size of a crystal grain in a standing wave direction.
    Type: Application
    Filed: November 15, 2010
    Publication date: May 19, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Ryusuke KAWAKAMI, Kenichirou NISHIDA, Norihito KAWAGUCHI, Miyuki MASAKI, Atsushi Yoshinouchi
  • Publication number: 20110086441
    Abstract: In laser annealing using a solid state laser, a focus position of a minor axial direction of a rectangular beam is easily corrected depending on positional variation of a laser irradiated portion of a semiconductor film. By using a minor-axis condenser lens 29 condensing incident light in a minor axial direction and a projection lens 30 projecting light, which comes from the minor-axis condenser lens 29, onto a surface of a semiconductor film 3, laser beam 1 is condensed on the surface of the semiconductor film 3 in the minor axial direction of a rectangular beam. The positional variation of a vertical direction of the semiconductor film 3 in a laser irradiated portion of the semiconductor film 3 is detected by a positional variation detector 31, and the minor-axis condenser lens 29 is moved in an optical axis direction based on a value of the detection.
    Type: Application
    Filed: June 12, 2008
    Publication date: April 14, 2011
    Applicant: IHI CORPORATION
    Inventors: Norihito KAWAGUCHI, Ryusuke KAWAKAMI, Kenichiro NISHIDA, Miyuki MASAKI, Masaru MORITA, Atsushi YOSHINOUCHI
  • Patent number: 7833871
    Abstract: A laser annealing method for executing laser annealing by irradiating a semiconductor film formed on a surface of a substrate with a laser beam, the method including the steps of, generating a linearly polarized rectangular laser beam whose cross section perpendicular to an advancing direction is a rectangle with an electric field directed toward a long-side direction of the rectangle or an elliptically polarized rectangular laser beam having a major axis directed toward a long-side direction, causing the rectangular laser beam to be introduced to the surface of the substrate, and setting a wavelength of the rectangular laser beam to a length which is about a desired size of a crystal grain in a standing wave direction.
    Type: Grant
    Filed: September 12, 2006
    Date of Patent: November 16, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Ryusuke Kawakami, Kenichirou Nishida, Norihito Kawaguchi, Miyuki Masaki, Atsushi Yoshinouchi
  • Publication number: 20100022102
    Abstract: A laser annealing method for executing laser annealing by irradiating a semiconductor film formed on a surface of a substrate with a laser beam, the method including the steps of, generating a linearly polarized rectangular laser beam whose cross section perpendicular to an advancing direction is a rectangle with an electric field directed toward a long-side direction of the rectangle or an elliptically polarized rectangular laser beam having a major axis directed toward a long-side direction, causing the rectangular laser beam to be introduced to the surface of the substrate, and setting a wavelength of the rectangular laser beam to a length which is about a desired size of a crystal grain in a standing wave direction.
    Type: Application
    Filed: September 12, 2006
    Publication date: January 28, 2010
    Applicants: IHI CORPORATION, Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Ryusuke Kawakami, Kenichirou Nishida, Norihito Kawaguchi, Miyuki Masaki, Atsushi Yoshinouchi
  • Patent number: 7645677
    Abstract: A method for manufacturing semiconductor device according to the present invention comprises a first film forming step of forming, on a concave and convex portion formed by an element on a semiconductor substrate, an oxidation preventive layer which prevents permeation of moisture into the element; a second film forming step of forming, on this oxidation preventive layer, an expansion layer which can be oxidized and expanded by a heat treatment in an oxidation atmosphere; a third film forming step of forming, on this expansion layer, an insulating film which can be fluidized by the heat treatment in the oxidation atmosphere; and an expansion step of subjecting, to the heat treatment in the oxidation atmosphere, the semiconductor substrate on which the oxidation preventive layer, the expansion layer and the insulating film have been formed, to fluidize the insulating film and to oxidize and expand the expansion layer, thereby eliminating bubbles generated in the insulating film.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: January 12, 2010
    Assignee: Ishikawajima-Harima Heavy Industries Co., Ltd.
    Inventors: Tomoyuki Watanabe, Atsushi Yoshinouchi
  • Publication number: 20080160783
    Abstract: A method for manufacturing semiconductor device according to the present invention comprises a first film forming step of forming, on a concave and convex portion formed by an element on a semiconductor substrate, an oxidation preventive layer which prevents permeation of moisture into the element; a second film forming step of forming, on this oxidation preventive layer, an expansion layer which can be oxidized and expanded by a heat treatment in an oxidation atmosphere; a third film forming step of forming, on this expansion layer, an insulating film which can be fluidized by the heat treatment in the oxidation atmosphere; and an expansion step of subjecting, to the heat treatment in the oxidation atmosphere, the semiconductor substrate on which the oxidation preventive layer, the expansion layer and the insulating film have been formed, to fluidize the insulating film and to oxidize and expand the expansion layer, thereby eliminating bubbles generated in the insulating film.
    Type: Application
    Filed: May 28, 2004
    Publication date: July 3, 2008
    Applicant: ISHIKAWAJIMA-HARIMA HEAVY INDUSTRIES CO., LTD.
    Inventors: Tomoyuki Watanabe, Atsushi Yoshinouchi
  • Patent number: 6890839
    Abstract: An object of the present invention is to provide a laser annealing method and apparatus capable of performing uniform beam emission. By means of the present invention, uniform beam application to a sample can be achieved because a linear cross-sectional configuration can be created in an optical system with a beam having a Gaussian distribution while areas of strong light intensity are avoided by rotating the beam from a laser light source at a prescribed angle by means of rotating means even when the beam pattern of the beam from the laser light source has a non-uniform intensity distribution.
    Type: Grant
    Filed: January 15, 2002
    Date of Patent: May 10, 2005
    Assignee: Ishikawajima-Harima Heavy Industries Co., Ltd.
    Inventors: Norihito Kawaguchi, Kenichiro Nishida, Mikito Ishii, Takehito Yagi, Miyuki Masaki, Atsushi Yoshinouchi, Koichiro Tanaka
  • Patent number: 6835675
    Abstract: A laser-irradiation method which comprises a process for fabricating a semiconductor device, comprising: a first step of forming a thin film amorphous semiconductor on a substrate having an insulating surface; a second step of modifying the thin film amorphous semiconductor into a crystalline thin film semiconductor by irradiating a pulse-type linear light and/or by applying a heat treatment; a third step of implanting an impurity element which imparts a one conductive type to the crystalline thin film semiconductor; and a fourth step of activating the impurity element by irradiating a pulse-type linear light and/or by applying a heat treatment; wherein the peak value, the peak width at half height, and the threshold width of the laser energy in the second and the fourth steps above are each distributed within a range of approximately ±3% of the standard value. Also claimed is a laser irradiation device which realizes the method above.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: December 28, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Satoshi Teramoto, Naoto Kusumoto, Takeshi Fukunaga, Setsuo Nakajima, Tadayoshi Miyamoto, Atsushi Yoshinouchi
  • Patent number: 6621636
    Abstract: A laser irradiation apparatus having a low running cost compared to the conventional, and a laser irradiation method using the laser irradiation apparatus, are provided. Crystal grains having a size in the same order as, or greater than, conventional grains are formed. The cooling speed of a semiconductor film is made slower, and it becomes possible to form crystal grains having a grain size in the same order as, or greater than, the size of grains formed in the case of irradiating laser light having a long output time to the semiconductor film. This is achieved by delaying one laser light with respect to another laser light, combining the laser lights, and performing irradiation to the semiconductor film in the case of irradiating laser light using a solid state laser as a light source, which has a short output time.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: September 16, 2003
    Assignees: Semiconductor Energy Laboratory Co., Ltd., Ishikawajima-Harima Heavy Industries, Co.
    Inventors: Koichiro Tanaka, Setsuo Nakajima, Takehito Yagi, Mikito Ishii, Kenichiro Nishida, Norihito Kawaguchi, Miyuki Masaki, Atsushi Yoshinouchi
  • Patent number: 6599790
    Abstract: A laser-irradiation method which comprises a process for fabricating a semiconductor device, comprising: a first step of forming a thin film amorphous semiconductor on a substrate having an insulating surface; a second step of modifying the thin film amorphous semiconductor into a crystalline thin film semiconductor by irradiating a pulse-type linear light and/or by applying a heat treatment; a third step of implanting an impurity element which imparts a one conductive type to the crystalline thin film semiconductor; and a fourth step of activating the impurity element by irradiating a pulse-type linear light and/or by applying a heat treatment; wherein the peak value, the peak width at half height, and the threshold width of the laser energy in the second and the fourth steps above are each distributed within a range of approximately ±3% of the standard value. Also claimed is a laser irradiation device which realizes the method above.
    Type: Grant
    Filed: February 13, 1997
    Date of Patent: July 29, 2003
    Assignee: Semiconductor Energy Laboratory Co., Ltd
    Inventors: Shunpei Yamazaki, Satoshi Teramoto, Naoto Kusumoto, Takeshi Fukunaga, Setsuo Nakajima, Tadayoshi Miyamoto, Atsushi Yoshinouchi
  • Publication number: 20030119287
    Abstract: A laser-irradiation method which comprises a process for fabricating a semiconductor device, comprising:
    Type: Application
    Filed: December 10, 2002
    Publication date: June 26, 2003
    Applicant: Semiconductor Energy Laboratory Co. Ltd., a Japan corporation
    Inventors: Shunpei Yamazaki, Satoshi Teramoto, Naoto Kusumoto, Takeshi Fukunaga, Setsuo Nakajima, Tadayoshi Miyamoto, Atsushi Yoshinouchi
  • Patent number: 6492213
    Abstract: A semiconductor device includes: a substrate; a line formed on the substrate; and a crystalline semiconductor film containing silicon connected to the line. The crystalline semiconductor film is crystallized by annealing where a constituting material of the line functions as a catalyst.
    Type: Grant
    Filed: February 11, 2000
    Date of Patent: December 10, 2002
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Atsushi Yoshinouchi, Yasuaki Murata
  • Patent number: 6455359
    Abstract: A laser-irradiation method which comprises a process for fabricating a semiconductor device, comprising: a first step of forming a thin film amorphous semiconductor on a substrate having an insulating surface; a second step of modifying the thin film amorphous semiconductor into a crystalline thin film semiconductor by irradiating a pulse-type linear light and/or by applying a heat treatment; a third step of implanting an impurity element which imparts a one conductive type to the crystalline thin film semiconductor; and a fourth step of activating the impurity element by irradiating a pulse-type linear light and/or by applying a heat treatment; wherein the peak value, the peak width at half height, and the threshold width of the laser energy in the second and the fourth steps above are each distributed within a range of approximately ±3% of the standard value. Also claimed is a laser irradiation device which realizes the method above.
    Type: Grant
    Filed: April 22, 1999
    Date of Patent: September 24, 2002
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Satoshi Teramoto, Naoto Kusumoto, Takeshi Fukunaga, Setsuo Nakajima, Tadayoshi Miyamoto, Atsushi Yoshinouchi