Patents by Inventor Atul Karve

Atul Karve has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11742095
    Abstract: Cores include different types of control cells in different numbers and positions. A periphery of the core just inside the perimeter may have higher reactivity fuel in outer control cells, and lower reactivity cells may be placed in an inner core inside the inner ring. Cores can include about half fresh fuel positioned in higher proportions in the inner ring and away from inner control cells. Cores are compatible with multiple core control cell setups, including BWRs, ESBWRs, ABWRs, etc. Cores can be loaded during conventional outages. Cores can be operated with control elements in only the inner ring control cells for reactivity adjustment. Control elements in outer control cells need be moved only at sequence exchanges. Near end of cycle, reactivity in the core may be controlled with inner control cells alone, and control elements in outer control cells can be fully withdrawn.
    Type: Grant
    Filed: January 31, 2021
    Date of Patent: August 29, 2023
    Assignee: GLOBAL NUCLEAR FUEL—AMERICAS, LLC
    Inventors: Gregory J. Pearson, Atul A. Karve
  • Publication number: 20210319918
    Abstract: Cores include different types of control cells in different numbers and positions. A periphery of the core just inside the perimeter may have higher reactivity fuel in outer control cells, and lower reactivity cells may be placed in an inner core inside the inner ring. Cores can include about half fresh fuel positioned in higher proportions in the inner ring and away from inner control cells. Cores are compatible with multiple core control cell setups, including BWRs, ESBWRs, ABWRs, etc. Cores can be loaded during conventional outages. Cores can be operated with control elements in only the inner ring control cells for reactivity adjustment. Control elements in outer control cells need be moved only at sequence exchanges. Near end of cycle, reactivity in the core may be controlled with inner control cells alone, and control elements in outer control cells can be fully withdrawn.
    Type: Application
    Filed: January 31, 2021
    Publication date: October 14, 2021
    Inventors: Gregory J. Pearson, Atul A. Karve
  • Patent number: 10930404
    Abstract: Cores include different types of control cells in different numbers and positions. A periphery of the core just inside the perimeter may have higher reactivity fuel in outer control cells, and lower reactivity cells may be placed in an inner core inside the inner ring. Cores can include about half fresh fuel positioned in higher proportions in the inner ring and away from inner control cells. Cores are compatible with multiple core control cell setups, including BWRs, ESBWRs, ABWRs, etc. Cores can be loaded during conventional outages. Cores can be operated with control elements in only the inner ring control cells for reactivity adjustment. Control elements in outer control cells need be moved only at sequence exchanges. Near end of cycle, reactivity in the core may be controlled with inner control cells alone, and control elements in outer control cells can be fully withdrawn.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: February 23, 2021
    Assignee: GLOBAL NUCLEAR FUEL—AMERICAS, LLC
    Inventors: Gregory J. Pearson, Atul A. Karve
  • Publication number: 20170301417
    Abstract: Cores include different types of control cells in different numbers and positions. A periphery of the core just inside the perimeter may have higher reactivity fuel in outer control cells, and lower reactivity cells may be placed in an inner core inside the inner ring. Cores can include about half fresh fuel positioned in higher proportions in the inner ring and away from inner control cells. Cores are compatible with multiple core control cell setups, including BWRs, ESBWRs, ABWRs, etc. Cores can be loaded during conventional outages. Cores can be operated with control elements in only the inner ring control cells for reactivity adjustment. Control elements in outer control cells need be moved only at sequence exchanges. Near end of cycle, reactivity in the core may be controlled with inner control cells alone, and control elements in outer control cells can be fully withdrawn.
    Type: Application
    Filed: February 27, 2017
    Publication date: October 19, 2017
    Inventors: Gregory J. Pearson, Atul A. Karve
  • Patent number: 9583223
    Abstract: Cores include different types of control cells in different numbers and positions. A periphery of the core just inside the perimeter may have higher reactivity fuel in outer control cells, and lower reactivity cells may be placed in an inner core inside the inner ring. Cores can include about half fresh fuel positioned in higher proportions in the inner ring and away from inner control cells. Cores are compatible with multiple core control cell setups, including BWRs, ESBWRs, ABWRs, etc. Cores can be loaded during conventional outages. Cores can be operated with control elements in only the inner ring control cells for reactivity adjustment. Control elements in outer control cells need be moved only at sequence exchanges. Near end of cycle, reactivity in the core may be controlled with inner control cells alone, and control elements in outer control cells can be fully withdrawn.
    Type: Grant
    Filed: June 23, 2012
    Date of Patent: February 28, 2017
    Assignee: Global Nuclear Fuel—Americas LLC
    Inventors: Gregory J. Pearson, Atul A. Karve
  • Publication number: 20130343502
    Abstract: Cores include different types of control cells in different numbers and positions. A periphery of the core just inside the perimeter may have higher reactivity fuel in outer control cells, and lower reactivity cells may be placed in an inner core inside the inner ring. Cores can include about half fresh fuel positioned in higher proportions in the inner ring and away from inner control cells. Cores are compatible with multiple core control cell setups, including BWRs, ESBWRs, ABWRs, etc. Cores can be loaded during conventional outages. Cores can be operated with control elements in only the inner ring control cells for reactivity adjustment. Control elements in outer control cells need be moved only at sequence exchanges. Near end of cycle, reactivity in the core may be controlled with inner control cells alone, and control elements in outer control cells can be fully withdrawn.
    Type: Application
    Filed: June 23, 2012
    Publication date: December 26, 2013
    Inventors: Gregory J. Pearson, Atul A. Karve
  • Publication number: 20120163526
    Abstract: Fuel supports have specially configured flow paths useable in reactor cores to achieve desired levels of flow at given positions. Any number of differently-configured inlet orifices, from three to hundreds, are useable in a given core. Inlet orifice configuration may include diameter sizing or presence of flow blockages such as filters, venturis, choke plates, and/or obstructions. Fuel supports may be positioned within a core plate in the nuclear reactor, with openings for a control blade and instrumentation tubes to pass through or between the fuel supports. Different fuel support configurations may be used at outer core periphery, inner core periphery, and central core portions. Example methods configure fuel support characteristics by examining the effect of modifying flow loss coefficients at particular bundle locations and configuring associated inlet orifices to achieve the modified flow loss coefficients, if the effect is a positive one.
    Type: Application
    Filed: December 28, 2010
    Publication date: June 28, 2012
    Applicant: GLOBAL NUCLEAR FUEL - AMERICAS, LLC
    Inventors: Gregory Joseph Pearson, Atul A. Karve
  • Patent number: 7804929
    Abstract: A method of calculating and using a constraint for fuel rods is provided. The method may utilize pin nodal exposures and pin nodal powers to obtain the constraint, calculate rod average exposures and rod average powers (kW/ft) in each fuel assembly, and develop maps from the calculated rod average exposures and powers (kW/ft) to operate design, optimization, licensing, and/or monitoring applications.
    Type: Grant
    Filed: December 23, 2004
    Date of Patent: September 28, 2010
    Assignee: Global Nuclear Fuel-Americas, LLC
    Inventors: Atul Karve, James Fawks
  • Patent number: 7532698
    Abstract: Systems and methods for a method for determining a critical effective k at an off-rated core state of a nuclear power plant includes determining, for the off-rated core state a control rod density, a percent core power, a gadolinium reactivity worth, a doppler reactivity worth, and a xenon reactivity worth responsive to a control rod pattern, a reactor power plan including the off-rated core state, and a reference effective k, calculating a change in an effective k from the reference effective k at the off-rated core state responsive to two or more parameters selected from the group consisting of the control rod density, the percent core power, the gadolinium reactivity worth, the doppler reactivity worth, and the xenon reactivity worth, and generating the critical effective k for the off-rated core state responsive to the change in the effective k from the reference effective k.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: May 12, 2009
    Assignee: Global Nuclear Fuel - Americas, LLC
    Inventors: Ugur Mertyurek, David Joseph Kropaczek, Atul A. Karve, Angelo P. Chopelas
  • Publication number: 20080123794
    Abstract: Systems and methods for a method for determining a critical effective k at an off-rated core state of a nuclear power plant includes determining, for the off-rated core state a control rod density, a percent core power, a gadolinium reactivity worth, a doppler reactivity worth, and a xenon reactivity worth responsive to a control rod pattern, a reactor power plan including the off-rated core state, and a reference effective k, calculating a change in an effective k from the reference effective k at the off-rated core state responsive to two or more parameters selected from the group consisting of the control rod density, the percent core power, the gadolinium reactivity worth, the doppler reactivity worth, and the xenon reactivity worth, and generating the critical effective k for the off-rated core state responsive to the change in the effective k from the reference effective k.
    Type: Application
    Filed: November 29, 2006
    Publication date: May 29, 2008
    Inventors: Ugur Mertyurek, David Joseph Kropaczek, Atul A. Karve, Angelo P. Chopelas
  • Publication number: 20070192069
    Abstract: An apparatus generating a graphical image of a core of a boiling water reactor (BWR) using at least one data set of channel deformation data including: a computer system including a display device for presenting the graphical image and a processor generating the graphical image using the at least one data set; the graphical image of the core includes symbolic representations of control blades arranged in the core, indicia identify each control blade, and indicia regarding deformation of channels adjacent each control blade, and a viewer software tool executed by the processor which accesses the at least one data set and determines a location in the core of the control blades and channels, and correlates the deformation data with the channels for display on the graphical image.
    Type: Application
    Filed: February 16, 2006
    Publication date: August 16, 2007
    Applicant: General Electric Company
    Inventors: Atul Karve, James Smith, John Burr, Angelo Chopelas, Gerald Potts, Mark Dubecky
  • Publication number: 20070177710
    Abstract: In a method of determining a cell friction metric for a control cell of a nuclear reactor, a channel face fast fluence and/or a channel face controlled operation parameter is determined for all channels. A total bow value is calculated for each channel based on the channel face fast fluence and/or channel face control parameters. For each channel, a channel wall pressure drop parameter is determined, and a total bulge value is calculated for each channel using the channel face fast fluence and channel wall pressure drop parameters. Total deformation at specified channel axial elevations for the cell is determined based on the total bow and bulge values. A control blade axial friction force value is calculated at each axial elevation based on the total deformation, along with channel stiffness and channel-control blade friction coefficient values. A maximum friction value is selected as the cell friction metric for the cell.
    Type: Application
    Filed: January 27, 2006
    Publication date: August 2, 2007
    Inventors: Atul Karve, Gerald Potts, Mark Dubecky, Robert Rand, Gerald Latter, Brian Moore
  • Publication number: 20060165210
    Abstract: A method of calculating and using a constraint for fuel rods is provided. The method may utilize pin nodal exposures and pin nodal powers to obtain the constraint, calculate rod average exposures and rod average powers (kW/ft) in each fuel assembly, and develop maps from the calculated rod average exposures and powers (kW/ft) to operate design, optimization, licensing, and/or monitoring applications.
    Type: Application
    Filed: December 23, 2004
    Publication date: July 27, 2006
    Inventors: Atul Karve, James Fawks
  • Publication number: 20060149512
    Abstract: A method of evaluating constraint functions, the evaluation being based at least in part on a channel deformation criteria.
    Type: Application
    Filed: December 30, 2004
    Publication date: July 6, 2006
    Inventors: David Joseph Kropaczek, Atul Karve, Angelo Chopelas, Brian Moore