Patents by Inventor Atze de Vries

Atze de Vries has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10249499
    Abstract: A method for manufacturing a vertical power semiconductor device is provided, wherein a first impurity is provided at the first main side of a semiconductor wafer. A first oxide layer is formed on the first main side of the wafer, wherein the first oxide layer is partially doped with a second impurity in such way that any first portion of the first oxide layer which is doped with the second impurity is spaced away from the semiconductor wafer by a second portion of the first oxide layer which is not doped with the second impurity and which is disposed between the first portion of the first oxide layer and the first main side of the semiconductor wafer. Thereafter a carrier wafer is bonded to the first oxide layer. During front-end-of-line processing on the second main side of the semiconductor wafer, the second impurity is diffused from the first oxide layer into the semiconductor wafer from its first main side by heat generated during the front-end-of-line processing.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: April 2, 2019
    Assignee: ABB Schweiz AG
    Inventors: Wolfgang Janisch, Atze de Vries, Sven Matthias
  • Publication number: 20180151367
    Abstract: A method for manufacturing a vertical power semiconductor device is provided, wherein a first impurity is provided at the first main side of a semiconductor wafer. A first oxide layer is formed on the first main side of the wafer, wherein the first oxide layer is partially doped with a second impurity in such way that any first portion of the first oxide layer which is doped with the second impurity is spaced away from the semiconductor wafer by a second portion of the first oxide layer which is not doped with the second impurity and which is disposed between the first portion of the first oxide layer and the first main side of the semiconductor wafer. Thereafter a carrier wafer is bonded to the first oxide layer. During front-end-of-line processing on the second main side of the semiconductor wafer, the second impurity is diffused from the first oxide layer into the semiconductor wafer from its first main side by heat generated during the front-end-of-line processing.
    Type: Application
    Filed: March 15, 2017
    Publication date: May 31, 2018
    Inventors: WOLFGANG JANISCH, ATZE DE VRIES, SVEN MATTHIAS
  • Patent number: 6740542
    Abstract: The present invention is related to a method for producing micromachined devices for use in Microelectromechanical Systems (MEMS), comprising the steps of providing a crystalline wafer, and processing from said wafer at least one micromachined device comprising at least one elongated opening and/or cavity, having a longitudinal axis, so that said longitudinal axis is at an angle to a direction which lies along the intersection of the front plane of the wafer and a cleavage plane, said cleavage plane being defined as a plane along which cleavage of the wafer is most likely to occur.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: May 25, 2004
    Assignees: Interuniversitair Microelektronica Centrum, Eastman Kodak Company
    Inventors: Ann Witvrouw, Atze de Vries, Piet De Moor, Luc Haspeslagh, Brigitte Parmentier, Agnes Verbist, Constantine Anagnostopoulos
  • Publication number: 20020108926
    Abstract: The present invention is related to a method for producing micromachined devices for use in Microelectromechanical Systems (MEMS), comprising the steps of providing a crystalline wafer, and processing from said wafer at least one micromachined device comprising at least one elongated opening and/or cavity, having a longitudinal axis, so that said longitudinal axis is at an angle to a direction which lies along the intersection of the front plane of the wafer and a cleavage plane, said cleavage plane being defined as a plane along which cleavage of the wafer is most likely to occur.
    Type: Application
    Filed: October 9, 2001
    Publication date: August 15, 2002
    Inventors: Ann Witvrouw, Atze de Vries, Piet De Moor, Luc Haspeslagh, Brigitte Parmentier, Agnes Verbist, Constantine Anagnostopoulos