Patents by Inventor Aubrey T. Hanbicki

Aubrey T. Hanbicki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11841338
    Abstract: Optical and electronic detection of chemicals, and particularly strong electron-donors, by 2H to 1T phase-based transition metal dichalcogenide (TMD) films, detection apparatus incorporating the TMD films, methods for forming the detection apparatus, and detection systems and methods based on the TMD films are provided. The detection apparatus includes a 2H phase TMD film that transitions to the 1T phase under exposure to strong electron donors. After exposure, the phase state can be determined to assess whether all or a portion of the TMD has undergone a transition from the 2H phase to the 1T phase. Following detection, TMD films in the 1T phase can be converted back to the 2H phase, resulting in a reusable chemical sensor that is selective for strong electron donors.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: December 12, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Adam L. Friedman, F. Keith Perkins, James C. Culbertson, Aubrey T. Hanbicki, Paul M. Campbell
  • Publication number: 20210080419
    Abstract: Optical and electronic detection of chemicals, and particularly strong electron-donors, by 2H to 1T phase-based transition metal dichalcogenide (TMD) films, detection apparatus incorporating the TMD films, methods for forming the detection apparatus, and detection systems and methods based on the TMD films are provided. The detection apparatus includes a 2H phase TMD film that transitions to the 1T phase under exposure to strong electron donors. After exposure, the phase state can be determined to assess whether all or a portion of the TMD has undergone a transition from the 2H phase to the 1T phase. Following detection, TMD films in the 1T phase can be converted back to the 2H phase, resulting in a reusable chemical sensor that is selective for strong electron donors.
    Type: Application
    Filed: September 25, 2020
    Publication date: March 18, 2021
    Applicant: The Government of the United States of America, as Represented by the Secretary of the Navy
    Inventors: Adam L. Friedman, F. Keith Perkins, James C. Culbertson, Aubrey T. Hanbicki, Paul M. Campbell
  • Patent number: 10801987
    Abstract: Optical and electronic detection of chemicals, and particularly strong electron-donors, by 2H to 1T phase-based transition metal dichalcogenide (TMD) films, detection apparatus incorporating the TMD films, methods for forming the detection apparatus, and detection systems and methods based on the TMD films are provided. The detection apparatus includes a 2H phase TMD film that transitions to the 1T phase under exposure to strong electron donors. After exposure, the phase state can be determined to assess whether all or a portion of the TMD has undergone a transition from the 2H phase to the 1T phase. Following detection, TMD films in the 1T phase can be converted back to the 2H phase, resulting in a reusable chemical sensor that is selective for strong electron donors.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: October 13, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Adam L. Friedman, F. Keith Perkins, James C. Culbertson, Aubrey T. Hanbicki, Paul M. Campbell
  • Patent number: 10663773
    Abstract: The spin-Hall effect can be used to modulate the linear polarization of light via the magneto-optical Kerr effect. A central area of an outer surface of an added layer atop a spin Hall material is illuminated while simultaneously passing a modulated electric current through the material, so that reflected light has a new linear polarization that differs from the initial linear polarization to a degree depending on the amplitude of the modulated electric current.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: May 26, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Olaf M. J. van 't Erve, Connie H. Li, Berend T. Jonker, Aubrey T. Hanbicki, Kathleen M. Mccreary
  • Patent number: 10436744
    Abstract: A method of making a low dimensional material chemical vapor sensor comprising providing a monolayer of a transition metal dichalcogenide, applying the monolayer to a substrate, applying a PMMA film, defining trenches, and placing the device in a n-butyl lithium (nbl) bath. A low dimensional material chemical vapor sensor comprising a monolayer of a transition metal dichalcogenide, the monolayer applied to a substrate, a region or regions of the transition metal dichalcogenide that have been treated with n-butyl lithium, the region or regions of the transition metal dichalcogenide that have been treated with n-butyl lithium have transitioned from a semiconducting to metallic phase, metal contacts on the region or regions of the transition metal dichalcogenide that have been treated with the n-butyl lithium.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: October 8, 2019
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Adam L. Friedman, F. Keith Perkins, James C. Culbertson, Aubrey T. Hanbicki, Paul M. Campbell
  • Publication number: 20190064553
    Abstract: The spin-Hall effect can be used to modulate the linear polarization of light via the magneto-optical Kerr effect. A acentral area of an outer surface of an added layer atop a spin Hall material is illuminated while simultaneously passing a modulated electric current through the material, so that reflected light has a new linear polarization that differs from the initial linear polarization to a degree depending on the amplitude of the modulated electric current.
    Type: Application
    Filed: October 29, 2018
    Publication date: February 28, 2019
    Inventors: Olaf M. J. van 't Erve, Connie H. Li, Berend T. Jonker, Aubrey T. Hanbicki, Kathleen M. Mccreary
  • Patent number: 10139655
    Abstract: The spin-Hall effect can be used to modulate the linear polarization of light via the magneto-optical Kerr effect. A material is illuminated while simultaneously passing a modulated electric current through the material, so that reflected light has a new linear polarization that differs from the initial linear polarization to a degree depending on the amplitude of the modulated electric current.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: November 27, 2018
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Olaf M. J. van't Erve, Connie H. Li, Berend T. Jonker, Aubrey T. Hanbicki, Kathleen M. McCreary
  • Publication number: 20180024085
    Abstract: Optical and electronic detection of chemicals, and particularly strong electron-donors, by 2H to 1T phase-based transition metal dichalcogenide (TMD) films, detection apparatus incorporating the TMD films, methods for forming the detection apparatus, and detection systems and methods based on the TMD films are provided. The detection apparatus includes a 2H phase TMD film that transitions to the 1T phase under exposure to strong electron donors. After exposure, the phase state can be determined to assess whether all or a portion of the TMD has undergone a transition from the 2H phase to the 1T phase. Following detection, TMD films in the 1T phase can be converted back to the 2H phase, resulting in a reusable chemical sensor that is selective for strong electron donors.
    Type: Application
    Filed: July 18, 2017
    Publication date: January 25, 2018
    Applicant: The Government of the United States of America, as Represented by the Secretary of the Navy
    Inventors: Adam L. Friedman, F. Keith Perkins, James C. Culbertson, Aubrey T. Hanbicki, Paul M. Campbell
  • Publication number: 20170299544
    Abstract: A method of making a low dimensional material chemical vapor sensor comprising providing a monolayer of a transition metal dichalcogenide, applying the monolayer to a substrate, applying a PMMA film, defining trenches, and placing the device in a n-butyl lithium (nbl) bath. A low dimensional material chemical vapor sensor comprising a monolayer of a transition metal dichalcogenide, the monolayer applied to a substrate, a region or regions of the transition metal dichalcogenide that have been treated with n-butyl lithium, the region or regions of the transition metal dichalcogenide that have been treated with n-butyl lithium have transitioned from a semiconducting to metallic phase, metal contacts on the region or regions of the transition metal dichalcogenide that have been treated with the n-butyl lithium.
    Type: Application
    Filed: April 4, 2017
    Publication date: October 19, 2017
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Adam L. Friedman, F. Keith Perkins, James C. Culbertson, Aubrey T. Hanbicki, Paul M. Campbell
  • Publication number: 20160320641
    Abstract: The spin-Hall effect can be used to modulate the linear polarization of light via the magneto-optical Kerr effect. A material is illuminated while simultaneously passing a modulated electric current through the material, so that reflected light has a new linear polarization that differs from the initial linear polarization to a degree depending on the amplitude of the modulated electric current.
    Type: Application
    Filed: April 27, 2016
    Publication date: November 3, 2016
    Inventors: Olaf M. J. van 't Erve, Connie H. Li, Berend T. Jonker, Aubrey T. Hanbicki, Kathleen M. McCreary