Patents by Inventor Audrey Riehl

Audrey Riehl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11247952
    Abstract: A process for producing 2,3,3,3-tetrafluoropropene comprises the steps: i) in a first adiabatic reactor comprising a fixed bed composed of an inlet and an outlet, bringing 2-chloro-3,3,3-trifluoropropene into contact with hydrofluoric acid in the gas phase in the presence of a catalyst to produce a stream A comprising 2,3,3,3-tetrafluoropropene, HF and unreacted 2-chloro-3,3,3-trifluoropropene; and ii) in a second adiabatic reactor comprising a fixed bed composed of an inlet and an outlet, bringing hydrofluoric acid into contact in the gas phase, optionally in the presence of a catalyst, with at least one chlorinated compound to produce a stream B comprising 2-chloro-3,3,3-trifluoropropene. The stream A obtained in step i) feeds said second reactor. The inlet temperature of the fixed bed of one of said first or second reactors is between 300° C. and 400° C. The longitudinal temperature difference between the inlet and the outlet of the fixed bed in question is less than 20° C.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: February 15, 2022
    Assignee: Arkema France
    Inventors: Bertrand Collier, Dominique Deur-Bert, Anne Pigamo, Audrey Riehl, Laurent Wendlinger
  • Patent number: 11192839
    Abstract: The present invention relates to a process for producing 2-chloro-3,3,3-trifluoropropene, comprising the steps: i) providing a stream A comprising at least one chlorinated compound selected from the group consisting of 2,3-dichloro-1,1,1-trifluoropropane, 1,1,1,2,3-pentachloropropane, 1,1,2,3-tetrachloropropene and 2,3,3,3-tetrachloropropene; and ii) in an adiabatic reactor comprising a fixed bed composed of an inlet and an outlet, bringing said stream A into contact, in the presence or absence of a catalyst, with HF in order to produce a stream B comprising 2-chloro-3,3,3-trifluoropropene, characterized in that the temperature at the inlet of the fixed bed of said adiabatic reactor is between 300° C. and 400° C. and the longitudinal temperature difference between the inlet of the fixed bed and the outlet of the fixed bed of said reactor is less than 20° C.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: December 7, 2021
    Assignee: Arkema France
    Inventors: Bertrand Collier, Dominique Deur-Bert, Anne Pigamo, Audrey Riehl, Laurent Wendlinger
  • Patent number: 11192837
    Abstract: A process for producing 2,3,3,3-tetrafluoropropene comprises i) in a first adiabatic reactor comprising a fixed bed composed of an inlet and an outlet, bringing hydrofluoric acid into contact, in the gas phase with at least one chlorinated compound in order to produce a stream A comprising 2-chloro-3,3,3-trifluoropropene, ii) in a second adiabatic reactor comprising a fixed bed composed of an inlet and an outlet, bringing the stream A into contact, in the gas phase in the presence of a catalyst, with hydrofluoric acid, to produce a stream B comprising 2,3,3,3-tetrafluoropropene. The temperature at the inlet of the fixed bed of one of said first or second reactors is between 300° C. and 400° C. The longitudinal temperature difference between the inlet and the outlet of the fixed bed of the reactor is less than 20° C.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: December 7, 2021
    Assignee: Arkema France
    Inventors: Bertrand Collier, Dominique Deur-Bert, Anne Pigamo, Audrey Riehl, Laurent Wendlinger
  • Patent number: 11136282
    Abstract: The present invention relates to a process for producing 2,3,3,3-tetrafluoropropene, comprising the steps: i) providing a stream A comprising at least one starting compound selected from the group consisting of 2-chloro-3,3,3-trifluoropropene and 2,3-dichloro-1,1,1-trifluoropropane; and ii) in an adiabatic reactor comprising a fixed bed composed of an inlet and an outlet, bringing said stream A into contact, in the presence or absence of a catalyst, with HF in order to produce a stream B comprising 2,3,3,3-tetrafluoropropene, characterized in that the temperature at the inlet of the fixed bed of said adiabatic reactor is between 300° C. and 400° C. and the longitudinal temperature difference between the inlet of the fixed bed and the outlet of the fixed bed of said reactor is less than 20° C.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: October 5, 2021
    Assignee: ARKEMA FRANCE
    Inventors: Bertrand Collier, Dominique Deur-Bert, Anne Pigamo, Audrey Riehl, Laurent Wendlinger
  • Publication number: 20210261486
    Abstract: The present invention relates to a process for producing 2-chloro-3,3,3-trifluoropropene, comprising the steps: i) providing a stream A comprising at least one chlorinated compound selected from the group consisting of 2,3-dichloro-1,1,1-trifluoropropane, 1,1,1,2,3-pentachloropropane, 1,1,2,3-tetrachloropropene and 2,3,3,3-tetrachloropropene; and ii) in an adiabatic reactor comprising a fixed bed composed of an inlet and an outlet, bringing said stream A into contact, in the presence or absence of a catalyst, with HF in order to produce a stream B comprising 2-chloro-3,3,3-trifluoropropene, characterized in that the temperature at the inlet of the fixed bed of said adiabatic reactor is between 300° C. and 400° C. and the longitudinal temperature difference between the inlet of the fixed bed and the outlet of the fixed bed of said reactor is less than 20° C.
    Type: Application
    Filed: June 6, 2019
    Publication date: August 26, 2021
    Inventors: Bertrand COLLIER, Dominique DEUR-BERT, Anne PIGAMO, Audrey RIEHL, Laurent WENDLINGER
  • Publication number: 20210253501
    Abstract: A process for producing 2,3,3,3-tetrafluoropropene comprises i) in a first adiabatic reactor comprising a fixed bed composed of an inlet and an outlet, bringing hydrofluoric acid into contact, in the gas phase with at least one chlorinated compound in order to produce a stream A comprising 2-chloro-3,3,3-trifluoropropene, ii) in a second adiabatic reactor comprising a fixed bed composed of an inlet and an outlet, bringing the stream A into contact, in the gas phase in the presence of a catalyst, with hydrofluoric acid, to produce a stream B comprising 2,3,3,3-tetrafluoropropene. The temperature at the inlet of the fixed bed of one of said first or second reactors is between 300° C. and 400° C. The longitudinal temperature difference between the inlet and the outlet of the fixed bed of the reactor is less than 20° C.
    Type: Application
    Filed: June 6, 2019
    Publication date: August 19, 2021
    Inventors: Bertrand COLLIER, Dominique DEUR-BERT, Anne PIGAMO, Audrey RIEHL, Laurent WENDLINGER
  • Publication number: 20210253500
    Abstract: The present invention relates to a process for producing 2,3,3,3-tetrafluoropropene, comprising the steps: i) providing a stream A comprising at least one starting compound selected from the group consisting of 2-chloro-3,3,3-trifluoropropene and 2,3-dichloro-1,1,1-trifluoropropane; and ii) in an adiabatic reactor comprising a fixed bed composed of an inlet and an outlet, bringing said stream A into contact, in the presence or absence of a catalyst, with HF in order to produce a stream B comprising 2,3,3,3-tetrafluoropropene, characterized in that the temperature at the inlet of the fixed bed of said adiabatic reactor is between 300° C. and 400° C. and the longitudinal temperature difference between the inlet of the fixed bed and the outlet of the fixed bed of said reactor is less than 20° C.
    Type: Application
    Filed: June 6, 2019
    Publication date: August 19, 2021
    Inventors: Bertrand COLLIER, Dominique DEUR-BERT, Anne PIGAMO, Audrey RIEHL, Laurent WENDLINGER
  • Publication number: 20210246091
    Abstract: A process for producing 2,3,3,3-tetrafluoropropene comprises the steps: i) in a first adiabatic reactor comprising a fixed bed composed of an inlet and an outlet, bringing 2-chloro-3,3,3-trifluoropropene into contact with hydrofluoric acid in the gas phase in the presence of a catalyst to produce a stream A comprising 2,3,3,3-tetrafluoropropene, HF and unreacted 2-chloro-3,3,3-trifluoropropene; and ii) in a second adiabatic reactor comprising a fixed bed composed of an inlet and an outlet, bringing hydrofluoric acid into contact in the gas phase, optionally in the presence of a catalyst, with at least one chlorinated compound to produce a stream B comprising 2-chloro-3,3,3-trifluoropropene. The stream A obtained in step i) feeds said second reactor. The inlet temperature of the fixed bed of one of said first or second reactors is between 300° C. and 400° C. The longitudinal temperature difference between the inlet and the outlet of the fixed bed in question is less than 20° C.
    Type: Application
    Filed: June 6, 2019
    Publication date: August 12, 2021
    Inventors: Bertrand COLLIER, Dominique DEUR-BERT, Anne PIGAMO, Audrey RIEHL, Laurent WENDLINGER
  • Patent number: 8940925
    Abstract: The invention relates to a method for producing N,N-dimethylaminoethyl acrylate by the transesterification reaction of an alykl acrylate by N1N-dimethylaminoethanol, and more particularly relates to a method for purifying the azeotropic fraction generated during said reaction, thereby enabling the recycling thereof on the alkyl acrylate production unit. The aim of the method of the invention is in particular to remove the acetaldehyde and the dialkoxyethane contained in the azeotropic fraction, either by the direct distillation of the azeotropic fraction or by the distillation of the aqueous phase resulting from the water scrubbing of the azeotropic fraction.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: January 27, 2015
    Assignee: Arkema France
    Inventors: Jean-Michel Paul, Coralie Graire, Audrey Riehl
  • Publication number: 20120035389
    Abstract: The invention relates to a method for producing N,N-dimethylaminoethyl acrylate by the transesterification reaction of an alykl acrylate by N1N-dimethylaminoethanol, and more particularly relates to a method for purifying the azeotropic fraction generated during said reaction, thereby enabling the recycling thereof on the alkyl acrylate production unit. The aim of the method of the invention is in particular to remove the acetaldehyde and the dialkoxyethane contained in the azeotropic fraction, either by the direct distillation of the azeotropic fraction or by the distillation of the aqueous phase resulting from the water scrubbing of the azeotropic fraction.
    Type: Application
    Filed: January 27, 2010
    Publication date: February 9, 2012
    Applicant: Arkema France
    Inventors: Jean-Michel Paul, Coralie Graire, Audrey Riehl