Patents by Inventor August Specht

August Specht has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8173976
    Abstract: An ion processing apparatus includes a plurality of electrodes, first and second insulators, a housing, and a plurality of compliant first supports and second supports. Each electrode has a length along a central axis, and includes a first end region and an axially opposing second end region. The first and second insulators are coaxially disposed about the first and second end regions, respectively. The housing is coaxially disposed about the electrodes, the first insulator and the second insulator. The first supports extend between, and into contact with, the first insulator and the housing. The second supports extend between, and into contact with, the second insulator and the housing. The supports isolate the electrodes from external forces.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: May 8, 2012
    Assignee: Agilent Technologies, Inc.
    Inventors: Bert David Egley, August Specht, Kenneth Newton, Dave Deford
  • Publication number: 20110016700
    Abstract: An ion processing apparatus includes a plurality of electrodes, first and second insulators, a housing, and a plurality of compliant first supports and second supports. Each electrode has a length along a central axis, and includes a first end region and an axially opposing second end region. The first and second insulators are coaxially disposed about the first and second end regions, respectively. The housing is coaxially disposed about the electrodes, the first insulator and the second insulator. The first supports extend between, and into contact with, the first insulator and the housing. The second supports extend between, and into contact with, the second insulator and the housing. The supports isolate the electrodes from external forces.
    Type: Application
    Filed: July 24, 2009
    Publication date: January 27, 2011
    Inventors: Bert David Egley, August Specht, Kenneth Newton, Dave Defond
  • Patent number: 7378649
    Abstract: In some embodiments, a method of optimizing operating parameters of an analytical instrument (e.g. lens voltages of a mass spectrometer) includes steps taken to minimize the method duration in the presence of substantial instrument noise and/or drift. Some methods include selecting a best point between a default instrument parameter set (vector) and a most-recent optimum parameter set; building a starting simplex at the selected best point location in parameter-space; and advancing the simplex to find an optimal parameter vector. The best simplex points are periodically re-measured, and the resulting readings are used to replace and/or average previous readings. The algorithm convergence speed may be adjusted by reducing simplex contractions gradually. The method may operate using all-integer parameter values, recognize parameter values that are out of an instrument range, and operate under the control of the instrument itself rather than an associated control computer.
    Type: Grant
    Filed: October 17, 2005
    Date of Patent: May 27, 2008
    Assignee: Varian, Inc.
    Inventors: Kenneth R. Newton, August Specht
  • Publication number: 20070145264
    Abstract: In some embodiments, a tandem (MS/MS) mass spectrometry method includes selecting a collision-induced dissociation (CID) voltage amplitude and a q-parameter value for a quadrupole ion trap to optimize a daughter ion fragmentation process for a given parent ion mass-to-charge (m/z) ratio. The q and CID voltage values may be selected according to a look-up table and/or using approximate analytical expressions. The correspondence between m/z values and (q, CID) value pairs may be established by pre-measurement calibration. A fragmentation-optimized q value may be computed according to m/z, and a CID voltage value may be determined according to the computed q value. A user may also force q to another value, for example in order to facilitate trapping of a desired daughter ion mass range, and the controller computes a CID voltage value according to the forced q value.
    Type: Application
    Filed: December 23, 2005
    Publication date: June 28, 2007
    Inventors: August Specht, Gregory Wells
  • Patent number: 7232993
    Abstract: In some embodiments, a tandem (MS/MS) mass spectrometry method includes selecting a collision-induced dissociation (CID) voltage amplitude and a q-parameter value for a quadrupole ion trap to optimize a daughter ion fragmentation process for a given parent ion mass-to-charge (m/z) ratio. The q and CID voltage values may be selected according to a look-up table and/or using approximate analytical expressions. The correspondence between m/z values and (q, CID) value pairs may be established by pre-measurement calibration. A fragmentation-optimized q value may be computed according to m/z, and a CID voltage value may be determined according to the computed q value. A user may also force q to another value, for example in order to facilitate trapping of a desired daughter ion mass range, and the controller computes a CID voltage value according to the forced q value.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: June 19, 2007
    Assignee: Varian, Inc.
    Inventors: August Specht, Gregory J. Wells
  • Publication number: 20070084995
    Abstract: In some embodiments, a method of optimizing operating parameters of an analytical instrument (e.g. lens voltages of a mass spectrometer) includes steps taken to minimize the method duration in the presence of substantial instrument noise and/or drift. Some methods include selecting a best point between a default instrument parameter set (vector) and a most-recent optimum parameter set; building a starting simplex at the selected best point location in parameter-space; and advancing the simplex to find an optimal parameter vector. The best simplex points are periodically re-measured, and the resulting readings are used to replace and/or average previous readings. The algorithm convergence speed may be adjusted by reducing simplex contractions gradually. The method may operate using all-integer parameter values, recognize parameter values that are out of an instrument range, and operate under the control of the instrument itself rather than an associated control computer.
    Type: Application
    Filed: October 17, 2005
    Publication date: April 19, 2007
    Inventors: Kenneth Newton, August Specht