Patents by Inventor Aurel Wolf

Aurel Wolf has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220267504
    Abstract: A process for preparing polyether carbonate alcohols by attaching cyclic ethylene carbonate to an H-functional starter substance in the presence of a catalyst, characterized in that at least one compound according to formulae X[VO3] (1), Y2[WO4] (2), or Y3[VO4] (3), wherein X=alkali metal, preferably potassium or cesium, and Y=potassium or cesium, is used.
    Type: Application
    Filed: August 12, 2020
    Publication date: August 25, 2022
    Inventors: Aurel Wolf, Mike Schuetze, Stefan Westhues, Christoph Guertler
  • Publication number: 20220267515
    Abstract: A process for preparing polyether carbonate alcohols by attaching cyclic propylene carbonate to an H-functional starter substance in the presence of a catalyst, characterized in that at least one compound according to formula MnX (I) is used as a catalyst, wherein M is selected from the alkali metal cations Li+, Na+, K+ and Cs+, X is selected from the anions VO3?, WO42?, MoO42? and VO43?, n is 1, if X?VO3?, n is 2, if X?WO42? or MoO42?, and n is 3, if X?VO43?.
    Type: Application
    Filed: August 12, 2020
    Publication date: August 25, 2022
    Inventors: Aurel Wolf, Stefan Westhues, Mike Schuetze, Karolina Walker, Christoph Guertler
  • Publication number: 20220227919
    Abstract: A process for producing an epoxy-group terminated polyoxazolidinone comprising the copolymerization of a polyisocyanate compound (A) with two or more isocyanate groups with a polyepoxide compound (B) with two or more epoxy groups in the presence of a specific catalyst (C), wherein the molar ratio of the epoxy groups of the polyepoxide compound (B) to the isocyanate groups of the polyisocyanate compound (A) is from 2.6:1 and less than 25:1, and wherein the copolymerization is operated in the absence of an additional solvent (D-1) with a boiling point higher than 170° C., preferred higher than 165° C., more preferred higher than 160° C., and most preferred higher than 150° C. at 1 bar (absolute). The epoxy-group terminated polyoxazolidinones resulting from the process are also provided.
    Type: Application
    Filed: June 5, 2020
    Publication date: July 21, 2022
    Inventors: Elena Frick-Delaittre, Stefan Westhues, Yvonne Reimann, Carsten Koopmans, Jan Weikard, Aurel Wolf, Kai Laemmerhold, Christoph Guertler, Daniel Thiel, Waldemar Schlundt, Mathias Glassner
  • Publication number: 20220204684
    Abstract: A process for producing an isocyanate-group terminated polyoxazolidinone comprising the copolymerization of a polyisocyanate compound (A) with two or more isocyanate groups with a polyepoxide compound (B) with two or more epoxy groups in the presence of a specific catalyst (C), wherein the molar ratio of the isocyanate groups of the polyisocyanate compound (B) to the epoxy groups of the polyepoxide compound (A) is larger than 2:1 and less than 25:1. The resulting isocyanate-group terminated polyoxazolidinones is also provided.
    Type: Application
    Filed: June 5, 2020
    Publication date: June 30, 2022
    Inventors: Elena Frick-Delaittre, Stefan Westhues, Yvonne Reimann, Carsten Koopmans, Jan Weikard, Aurel Wolf, Dieter Mager, Christoph Guertler
  • Patent number: 11370874
    Abstract: A process for producing thermoplastic polyoxazolidinone, comprising the following steps: (i) Reaction of a diisocyanate compound (A) with a bisepoxide compound (B) in the presence of a catalyst (C) and a compound (D) in a solvent (E) forming an intermediate compound (F) and (ii) Reaction of a compound (G) with the intermediate (F) formed in step (i), wherein compound (D) is one or more compounds selected from the group consisting of monofunctional isocyanate and monofunctional epoxide, and wherein compound (G) is an alkylene oxide. The invention is also related to the resulting thermoplastic polyoxazolidinone.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: June 28, 2022
    Assignee: Covestro Deutschland AG
    Inventors: Carsten Koopmans, Christoph Guertler, Aurel Wolf, Elena Frick-Delaittre, Kai Laemmerhold, Claudine Rangheard, Timo Breuer
  • Patent number: 11352462
    Abstract: A process for producing rigid PUR/PIR foams comprising A1 an isocyanate-reactive component, A2 a flame retardant, A3 a blowing agent, A4 a catalyst, A5 optionally auxiliaries and additives, and B an organic polyisocyanate component. Component A1 comprises a triurethane triol A1.1 and a compound A1.2 selected from the group consisting of polyether polyol, polyester polyol, polyether carbonate polyol, and polyether ester polyol. Also disclosed is a rigid PUR/PIR foam, an insulating material, a composite element, and a mixture.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: June 7, 2022
    Assignee: COVESTRO DEUTSCHLAND AG
    Inventors: Hartmut Nefzger, Persefoni Hilken, Markus Meuresch, Aurel Wolf
  • Patent number: 11312812
    Abstract: The present invention describes a process for producing an elastomer, preferably a polyurethane-containing elastomer, by reacting a polyol component (A) comprising at least one polyether carbonate polyol (A-1) containing carbon-carbon double bonds with a component (B) which is reactive with OH groups and contains at least one compound reactive toward OH groups, preferably an isocyanate component (B-1) containing NCO groups, in the presence of a free-radical initiator (C), preferably at least one peroxide (C-1), and optionally a catalyst (D), where the molar ratio of the OH-reactive groups of component (B) reactive with groups, to the OH groups of the polyol component (A) containing carbon-carbon double bonds, is greater than 1.0. It further relates to elastomers obtainable by such a process, preferably polyurethane elastomers, the use thereof, and two-component systems for production of elastomers, preferably polyurethane elastomers.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: April 26, 2022
    Assignee: Covestro Deutschland AG
    Inventors: Jochen Norwig, Volker Marker, Jens Langanke, Aurel Wolf, Christoph Gürtler, Philipp Nicholas Wagner, Florian Kessler
  • Publication number: 20220119579
    Abstract: In a process for producing polyoxymethylene-polyalkylene oxide block copolymers comprising the step of polymerizing an alkylene oxide in the presence of an OH-terminated polyoxymethylene polymer and a catalyst, the polyoxymethylene polymer has a number-average molecular weight Mn determined after derivatization with propylene oxide and gel permeation chromatography against polystyrene standards with tetrahydrofuran as the eluent of ?1100 g/mol to ?2300 g/mol and the ratio of alkylene oxide to polyoxymethylene polymer is ?0.05 mol/g. The invention further relates to copolymers obtainable by the process, to a process for producing polyurethane polymers using these copolymers and to polyurethanes obtainable therefrom.
    Type: Application
    Filed: November 14, 2019
    Publication date: April 21, 2022
    Inventors: Markus Meuresch, Aurel Wolf, Christoph Guertler, Annika Stute, Mike Schuetze
  • Patent number: 11299577
    Abstract: A process for producing thermoplastic polyoxazolidinone comprising copolymerization of a diisocyanate compound (A) with a bisepoxide compound (B) in the presence of a catalyst (C) and a compound (D) in a solvent (E), wherein the catalyst (C) is selected from the group consisting of alkali halogenides and earth alkali halogenides, and transition metal halogenides, compound (D) is selected from the group consisting of monofunctional isocyanate, monofunctional epoxide, and wherein the process comprises step (?) of placing the solvent (E) and the catalyst (C) in a reactor to provide a mixture, and adding the diisocyanate compound (A), the bisepoxide compound (B) and the compound (D) in step (?) to the mixture resulting from the step (?). The invention is also related to the resulting thermoplastic polyoxazolidinone.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: April 12, 2022
    Assignee: Covestro Deutschland AG
    Inventors: Carsten Koopmans, Christoph Guertler, Aurel Wolf, Elena Frick-Delaittre, Kai Laemmerhold, Claudine Rangheard, Timo Breuer
  • Publication number: 20220056207
    Abstract: The present invention relates to a process for preparing a polyester-polyether polyol block copolymer by reaction of an H-functional starter substance with lactone in the presence of a catalyst to afford a polyester followed by reaction of the polyester from step i) with alkylene oxides in the presence of a catalyst (B), wherein the lactone is a 4-membered lactone. The invention further relates to the polyester-polyether polyol block copolymer obtainable by the present process.
    Type: Application
    Filed: December 16, 2019
    Publication date: February 24, 2022
    Inventors: Markus Meuresch, Christoph Guertler, Aurel Wolf, Martin Machat
  • Publication number: 20220049042
    Abstract: The invention relates to a method for producing a polyoxymethylene polyoxyalkylene block copolymer, said method including the process of reacting a polymer formaldehyde compound with alkylene oxide in the presence of a double metal cyanide (DMC) catalyst and an H-functional starter substance, wherein the theoretical molar mass of the polymer formaldehyde compound is lower than the theoretical molar mass of the H-functional starter substance, and the polymer formaldehyde compound has at least one terminal hydroxyl group, the theoretical molar mass of the H-functional starter substance being at least 500 g/mol. In the method according to the invention, a mixture i) is provided comprising the DMC catalyst and the H-functional starter substance in step (i); the polymer formaldehyde compound is then added to the mixture (i) in step (ii), thereby forming a mixture (ii); and the alkylene oxide is added in step (iii), step (ii) being carried out at the same time as or prior to step (iii).
    Type: Application
    Filed: October 21, 2019
    Publication date: February 17, 2022
    Inventors: Markus Meuresch, Aurel Wolf, Christoph Guertler, Annika Stute
  • Publication number: 20220041786
    Abstract: A process for producing thermoplastic polyoxazolidinone, comprising the following steps: (i) Reaction of a diisocyanate compound (A) with a bisepoxide compound (B) in the presence of a catalyst (C) and a compound (D) in a solvent (E) forming an intermediate compound (F) and (ii) Reaction of a compound (G) with the intermediate (F) formed in step (i), wherein the bisepoxide compound (B) comprises isosorbide diglycidylether, wherein compound (D) is one or more compounds selected from the group consisting of monofunctional isocyanate and monofunctional epoxide, and wherein compound (G) is an alkylene oxide. The invention is also related to the resulting thermoplastic polyoxazolidinone.
    Type: Application
    Filed: October 25, 2019
    Publication date: February 10, 2022
    Inventors: Carsten Koopmans, Kai Laemmerhold, Christoph Guertler, Elena Frick-Delaittre, Aurel Wolf, Joachim Simon, Min Wang, Daniel Thiel, Walter Leitner
  • Publication number: 20220002467
    Abstract: A process for producing polyoxymethylene polymers comprises the reaction of aqueous formaldehyde solution with an aqueous solution of a base, wherein A) a starter solution comprising formaldehyde is initially charged and B) an aqueous formaldehyde solution and a base are added to the starter solution to obtain a reaction mixture. The starter solution in step A) has a temperature of ?40° C. to ?46° C. and the additions of the solutions in step B) are performed at a temperature of the reaction mixture of ?40° C. to ?46° C. The base is an alkali metal hydroxide and/or an alkaline earth metal hydroxide and the molar ratio of formaldehyde to base is ?55:1 to ?90:1 based on the total amounts of formaldehyde and base employed in the process. The base in step B) is added in aqueous solution.
    Type: Application
    Filed: November 20, 2019
    Publication date: January 6, 2022
    Inventors: Markus MEURESCH, Aurel WOLF, Christoph GÜRTLER, Annika HILL, Peter SCHALKE, Maik HELLER, Torsten DITTMER
  • Publication number: 20210380748
    Abstract: A process for producing thermoplastic polyoxazolidinone comprising copolymerization of a diisocyanate compound (A) with a bisepoxide compound (B) in the presence of a catalyst (C) and a compound (D) in a solvent (E), wherein the bisepoxide compound (B) comprises isosorbide diglycidylether, wherein the catalyst (C) is selected from the group consisting of alkali halogenides and earth alkali halogenides, and transition metal halogenides, compound (D) is selected from the group consisting of monofunctional isocyanate, monofunctional epoxide, and wherein the process comprises step (?) of placing the solvent (E) and the catalyst (C) in a reactor to provide a mixture, and adding the diisocyanate compound (A), the bisepoxide compound (B) and the compound (D) in step (?) to the mixture resulting from the step (?). The invention is also related to the resulting thermoplastic polyoxazolidinone.
    Type: Application
    Filed: October 25, 2019
    Publication date: December 9, 2021
    Inventors: Carsten Koopmans, Kai Laemmerhold, Christoph Guertler, Elena Frick-Delaittre, Aurel Wolf, Joachim Simon, Min Wang, Daniel Thiel, Walter Leitner
  • Publication number: 20210332183
    Abstract: The invention relates to a process for producing a polyester by reacting a H-functional starter substance with a lactone in the presence of a catalyst, wherein the H-functional compound has one or more free carboxyl groups, wherein the lactone is a four-membered ring lactone, and wherein the catalyst is a Brönsted acid or a double metal cyanide (DMC) catalyst. The invention also relates to the polyester that can be obtained by the present invention.
    Type: Application
    Filed: December 16, 2019
    Publication date: October 28, 2021
    Inventors: Martin Machat, Aurel Wolf, Christoph Guertler, Markus Meuresch
  • Publication number: 20210309785
    Abstract: A catalyst for the synthesis of oxazolidinones, preferable polyoxazolidinones, comprising an N-heterocyclic carbene and a Lewis acid (L). The invention is also related to a process for the production of an oxazolidinone compound, preferably a polyoxazolidinone compound, by reacting an isocyanate compound, preferably a polyisocyanate compound with an epoxide compound, preferably a polyepoxide compound, in the presence of the N-heterocyclic carbene and a Lewis acid catalyst and also to the resulting polyoxazolidinone.
    Type: Application
    Filed: August 2, 2019
    Publication date: October 7, 2021
    Inventors: Carsten Koopmans, Elena Frick-Delaittre, Aurel Wolf, Christoph Guertler, Michael Buchmeiser, Hagen Altmann, Stefan Naumann
  • Publication number: 20200392276
    Abstract: A process for producing rigid PUR/PIR foams comprising A1 an isocyanate-reactive component, A2 a flame retardant, A3 a blowing agent, A4 a catalyst, A5 optionally auxiliaries and additives, and B an organic polyisocyanate component. Component A1 comprises a triurethane triol A1.1 and a compound A1.2 selected from the group consisting of polyether polyol, polyester polyol, polyether carbonate polyol, and polyether ester polyol. Also disclosed is a rigid PUR/PIR foam, an insulating material, a composite element, and a mixture.
    Type: Application
    Filed: December 12, 2018
    Publication date: December 17, 2020
    Inventors: Hartmut Nefzger, Persefoni Hilken, Markus Meuresch, Aurel Wolf
  • Publication number: 20200385507
    Abstract: A process for producing thermoplastic polyoxazolidinone comprising copolymerization of a diisocyanate compound (A) with a bisepoxide compound (B) in the presence of a catalyst (C) and a compound (D) in a solvent (E), wherein the catalyst (C) is selected from the group consisting of alkali halogenides and earth alkali halogenides, and transition metal halogenides, compound (D) is selected from the group consisting of monofunctional isocyanate, monofunctional epoxide, and wherein the process comprises step (?) of placing the solvent (E) and the catalyst (C) in a reactor to provide a mixture, and adding the diisocyanate compound (A), the bisepoxide compound (B) and the compound (D) in step (?) to the mixture resulting from the step (?). The invention is also related to the resulting thermoplastic polyoxazolidinone.
    Type: Application
    Filed: September 11, 2018
    Publication date: December 10, 2020
    Inventors: Carsten Koopmans, Christoph Guertler, Aurel Wolf, Elena Frick-Delaittre, Kai Laemmerhold, Claudine Rangheard, Timo Breuer
  • Patent number: 10836858
    Abstract: The invention relates to a method for producing polyether carbonate polyols by adding alkylene oxides and carbon dioxide to an H-functional starter substance in the presence of a double metal cyanide (DMC) catalyst or in the presence of a metal complex catalyst based on the metals zinc and/or cobalt, wherein (?) alkylene oxide and carbon dioxide are added to an H-functional starter substance in a reactor with a total pressure (absolute) of 5 to 120 bar in the presence of a double metal cyanide catalyst or in the presence of a metal complex catalyst based on the metals zinc and/or cobalt, and a reaction mixture containing the polyether carbonate polyol is obtained, (?) the reaction mixture obtained in step (?) remains in the reactor or is optionally continuously transferred to a downstream reactor at a starting total pressure (absolute) of 5 to 120 bar, the content of free alkylene oxide in the reaction mixture being reduced in the course of a downstream reaction in each case, and the total pressure (absolute)
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: November 17, 2020
    Assignee: Covestro Deutschland AG
    Inventors: Jörg Hofmann, Urs Rauwald, Stefanie Braun, Matthias Wohak, Hartmut Nefzger, Nicole Welsch, Aurel Wolf, Michael Traving, Lars Krueger
  • Publication number: 20200354502
    Abstract: A process for producing thermoplastic polyoxazolidinone, comprising the following steps: (i) Reaction of a diisocyanate compound (A) with a bisepoxide compound (B) in the presence of a catalyst (C) and a compound (D) in a solvent (E) forming an intermediate compound (F) and (ii) Reaction of a compound (G) with the intermediate (F) formed in step (i), wherein compound (D) is one or more compounds selected from the group consisting of monofunctional isocyanate and monofunctional epoxide, and wherein compound (G) is an alkylene oxide. The invention is also related to the resulting thermoplastic polyoxazolidinone.
    Type: Application
    Filed: September 11, 2018
    Publication date: November 12, 2020
    Inventors: Carsten Koopmans, Christoph Guertler, Aurel Wolf, Elena Frick-Delaittre, Kai Laemmerhold, Claudine Rangheard, Timo Breuer