Patents by Inventor Aurelio Valencia

Aurelio Valencia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060069323
    Abstract: A system and method is provided that is adapted to allow for rapid cannulation of a guidewire into a branch lumen extending from a main lumen in a body of a patient, and in particular into two renal arteries extending from an abdominal aorta wall. A dual lumen catheter shaft delivers first and second pre-shaped guidewires to the location of the renal arteries in the aorta, such that the first and second pre-shaped guidewires self-cannulate within the renal arteries. Additional guidewires and/or interventional devices may be incorporated into the system and method for use with the catheter shaft, or over the two pre-shaped guidewires, to meet a particular need for a particular patient or intended procedure.
    Type: Application
    Filed: September 22, 2005
    Publication date: March 30, 2006
    Applicant: FlowMedica, Inc.
    Inventors: Jeffrey Elkins, Harry Goodson, Aurelio Valencia, Richard Aboytes, Samir Patel
  • Publication number: 20060047266
    Abstract: An introducer system delivers therapy locally to a renal system in a patient. A proximal coupler assembly is coupled to an introducer sheath that delivers multiple devices simultaneously into a location within an abdominal aorta associated with first and second renal artery ostia. The coupler assembly has a network of branch lumens arranged to allow for smooth slideable engagement of multiple coupled devices without substantial interference therebetween. A first branch lumen typically introduces a percutaneous translumenal interventional device such as an angiography or guiding catheter into the introducer sheath and is substantially aligned with a longitudinal axis of the sheath. One or more other branch lumen are off-axis from the longitudinal axis by about 30 degrees or less and introduce components of a bilateral renal delivery assembly into the introducer sheath in conjunction with the other device. Novel insertion devices are provided to coordinate the coupling of the multiple devices.
    Type: Application
    Filed: October 25, 2005
    Publication date: March 2, 2006
    Applicant: FlowMedica, Inc.
    Inventors: Jeffrey Elkins, Harry Goodson, Mark Maguire, Aurelio Valencia, Samir Patel
  • Publication number: 20060036218
    Abstract: Two renal delivery members have two distal ports that are adapted to be positioned within two renal arteries via their corresponding renal ostia at unique locations along an abdominal aortic wall. A proximal coupler assembly is outside the body and is coupled to deliver material to the two distal ports for bi-lateral renal therapy. One or both of the delivery members may be self-cannulating into the corresponding renal ostium, or may be controllably steered into the respective ostium. Non-occlusive anchors may be coupled with one or both of the delivery members at anchoring positions in the renal artery or abdominal aorta to secure the renal delivery member within the renal artery. Renal-active fluid agents are coupled to the bi-lateral delivery system. Another renal therapy system cannulates a renal vein from the vena cava and controls a retrograde delivery of agents to the respective kidney.
    Type: Application
    Filed: March 16, 2005
    Publication date: February 16, 2006
    Applicant: FlowMedica, Inc.
    Inventors: Harry Goodson, Jeffrey Elkins, Samir Patel, Aurelio Valencia, Ricardo Aboytes, Craig Ball, Randy Kesten, Andrew Kramer, Sam Payne, Sophia Pesotchinsky, Michael Rosenthal
  • Publication number: 20060030814
    Abstract: A local renal delivery system includes a flow isolation assembly and a local injection assembly. The flow isolation assembly in one mode is adapted to isolate only a partial flow region along the outer circumference along the aorta wall such that fluids inject there are maintained to flow substantially into the renal arteries. Various types of flow isolation assemblies and local injection assemblies are described.
    Type: Application
    Filed: March 18, 2005
    Publication date: February 9, 2006
    Applicant: FlowMedica, Inc.
    Inventors: Aurelio Valencia, Ricardo Aboytes, Jeffrey Elkins, Harry Goodson, Samir Patel, Craig Ball, Trevor Greenan, Randy Kesten, Andrew Kramer, Sam Payne, Sophia Pesotchinsky, Michael Rosenthal
  • Patent number: 6994700
    Abstract: An introducer system delivers therapy locally to a renal system in a patient. A proximal coupler assembly is coupled to an introducer sheath that delivers multiple devices simultaneously into a location within an abdominal aorta associated with first and second renal artery ostia. The coupler assembly has a network of branch lumens arranged to allow for smooth slideable engagement of multiple coupled devices without substantial interference therebetween. A first branch lumen typically introduces a percutaneous translumenal interventional device such as an angiography or guiding catheter into the introducer sheath and is substantially aligned with a longitudinal axis of the sheath. One or more other branch lumen are off-axis from the longitudinal axis by about 30 degrees or less and introduce components of a bilateral renal delivery assembly into the introducer sheath in conjunction with the other device. Novel insertion devices are provided to coordinate the coupling of the multiple devices.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: February 7, 2006
    Assignee: Flowmedica, Inc.
    Inventors: Jeffrey M. Elkins, Harry B. Goodson, Mark A. Maguire, Aurelio Valencia, Samir R. Patel
  • Publication number: 20050245882
    Abstract: A renal flow system injects a volume of fluid agent into a location within an abdominal aorta in a manner that flows bi-laterally into each of two renal arteries via their respectively spaced ostia along the abdominal aorta wall. A local injection assembly includes two injection members, each having an injection port that couples to a source of fluid agent externally of the patient. The injection ports may be positioned with an outer region of blood flow along the abdominal aorta wall perfusing the two renal arteries. A flow isolation assembly may isolate flow of the injected agent within the outer region and into the renals. The injection members are delivered to the location in a first radially collapsed condition, and bifurcate across the aorta to inject into the spaced renal ostia. A delivery catheter for upstream interventions is used as a chassis to deliver a bilateral local renal injection assembly to the location within the abdominal aorta.
    Type: Application
    Filed: March 18, 2005
    Publication date: November 3, 2005
    Applicant: FlowMedica, Inc.
    Inventors: Jeffrey Elkins, Aurelio Valencia, Samir Patel, Ricardo Aboytes, Harry Goodson, Craig Ball
  • Publication number: 20050245892
    Abstract: An introducer system delivers therapy locally to a renal system in a patient. A proximal coupler assembly is coupled to an introducer sheath that delivers multiple devices simultaneously into a location within an abdominal aorta associated with first and second renal artery ostia. The coupler assembly has a network of branch lumens arranged to allow for smooth slideable engagement of multiple coupled devices without substantial interference therebetween. A first branch lumen typically introduces a percutaneous translumenal interventional device such as an angiography or guiding catheter into the introducer sheath and is substantially aligned with a longitudinal axis of the sheath. One or more other branch lumen are off-axis from the longitudinal axis by about 30 degrees or less and introduce components of a bilateral renal delivery assembly into the introducer sheath in conjunction with the other device. Novel insertion devices are provided to coordinate the coupling of the multiple devices.
    Type: Application
    Filed: March 18, 2005
    Publication date: November 3, 2005
    Applicant: FlowMedica, Inc.
    Inventors: Jeffrey Elkins, Harry Goodson, Mark Maguire, Aurelio Valencia, Samir Patel
  • Publication number: 20030060822
    Abstract: A tissue ablation device assembly ablates a region of tissue in a body of a patient. The tissue ablation device assembly comprises an elongated body having a proximal end portion and a distal end portion. A tubular porous membrane having a porous wall with an inner surface that defines an inner space is located along the distal end portion of the elongated body. An ablation element is disposed over the porous membrane, with the ablation element having a fixed position with respect to the porous membrane. A fluid passageway extending through the elongated body and communicates with the inner space. The fluid passageway is adapted to be fluidly coupled to a pressurizeable fluid source for delivering a volume of pressurized fluid from the fluid source to the inner space. The porous membrane allows at least a substantial portion of the volume of pressurized fluid to pass through the porous wall for enhancing ablative coupling between the electrode and the region of tissue.
    Type: Application
    Filed: November 6, 2002
    Publication date: March 27, 2003
    Inventors: Alan K. Schaer, Aurelio Valencia
  • Patent number: 6522930
    Abstract: A tissue ablation device assembly ablates a region of tissue of a body space wall of a patient. In a tissue ablation device assembly, an ablation member is disposed on the distal end portion of an elongated body. The ablation member includes an ablation element and at least one conductor coupled to the ablation element. A porous membrane covers the ablation element and defines an inner space between the ablation element and an inner surface of the porous membrane. A pressurizable fluid passageway extends between a fluid port on the proximal end portion of the elongated body and the inner space within the porous membrane. Fluid can pass from the fluid port, through the pressurizable fluid passageway, to the inner space. The porous membrane allows a volume of pressurized fluid to pass through the porous membrane to an exterior of the ablation member so as to irrigate the ablation element.
    Type: Grant
    Filed: May 6, 1998
    Date of Patent: February 18, 2003
    Assignee: Atrionix, Inc.
    Inventors: Alan K. Schaer, Aurelio Valencia
  • Patent number: 5913854
    Abstract: A catheter assembly (2) includes a catheter shaft (6) having a tip portion (10) with a hollow interior (30) and a linear ablation electrode (18, 34, 36, 44, 58) spaced apart from the distal end (22) of the tip portion. The electrode has an inner surface (28) which is effectively fluidly exposed to the hollow interior so that a cooling fluid (32) passing through the interior contacts the inner surface so to effectively cool the electrode. The electrode can include a series of band electrodes (18, 34) or one or more spiral electrodes (36, 44, 58). One method for making the tip portion involves mounting the electrode to a mandrel, filling the spaces between the edges (26) of the electrode with a polymer and then removing the resulting tubular structure from the mandrel. The cooling fluid can pass through a hollow spiral electrode (58) for enhanced cooling effectiveness.
    Type: Grant
    Filed: February 4, 1997
    Date of Patent: June 22, 1999
    Assignee: Medtronic, Inc.
    Inventors: Mark A. Maguire, Hong Li, Joseph M. Karratt, Aurelio Valencia
  • Patent number: 5807249
    Abstract: A reduced stiffness, bidirectionally deflecting catheter assembly (2) includes a handle (4) and flexible catheter shaft (6) with a tip section (12) secured to its distal end (14). The tip section has a radially offset, longitudinally extending core wire lumen (42) through which a tapered core wire (24), extending from a core wire manipulator (56) on the handle, passes. The core wire manipulator can be moved in two different directions (58, 60) to pull or push on the core wire to cause the tip section to deflect axially in opposite directions in the same plane. The ends of the core wire are non-rotatably secured to the handle and the tip section so that rotating the handle about its axis (63) causes the tip section to deflect laterally due to torsionally forces exerted on the tip section by both the catheter shaft and the core wire. The taper on the core wire determines the size and shape of the curved tip section when the tip is axially deflected.
    Type: Grant
    Filed: February 13, 1997
    Date of Patent: September 15, 1998
    Assignee: Medtronic, Inc.
    Inventors: Jay J. Qin, Aurelio Valencia, Scott H. West