Patents by Inventor Austin A. Richards

Austin A. Richards has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11875544
    Abstract: Systems and methods include an infrared camera configured to capture an infrared image of a scene, a visible light camera configured to capture a visible light image of the scene, and a logic device configured to simultaneously capture a pair of images of the scene comprising the infrared image of the scene and the visible image of the scene, align the pair of images so that a pixel location in one of the pair of images has a corresponding pixel location in the other image, classify the visible image, annotate the infrared image based, at least in part, on the classification of the visible image, and add the annotated infrared image to a neural network training dataset for use in training a neural network for infrared image classification.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: January 16, 2024
    Assignee: Teledyne FLIR Commercial Systems, Inc.
    Inventors: Austin A. Richards, Andres Prieto-Moreno
  • Patent number: 11875559
    Abstract: A method involves use of multiple convolutional neural networks and multiple segmentation masks to programmatically generate a stool rating for a digital image of a diaper with stool. The method includes generating, by a first convolutional neural network, a first mask representing an identification of an area of the digital image that corresponds to stool, and a second mask representing an identification of an area of the digital image that corresponds to a diaper. The method further includes generating a third mask representing an intersection of the first and second masks, and generating a modified digital image utilizing the third mask. The method further includes determining, by a second convolutional neural network, a stool rating for the digital image of the diaper with stool by utilizing the modified digital image as input for the second convolutional neural network.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: January 16, 2024
    Assignee: OBVIO HEALTH USA, INC.
    Inventors: Brian Alexander Cohn, Austin Richard Napana Lamb, Jamie Chen, Melissa Trieu, Nikki Jamshidbaigi, Pavle Joshua Medvidovic, Craig Gravina
  • Publication number: 20230054197
    Abstract: Systems and methods include an infrared camera configured to capture an infrared image of a scene, a visible-light camera configured to capture a visible-light image of the scene, and a logic device configured to simultaneously capture a pair of images of the scene comprising the infrared image of the scene and the visible image of the scene, align the pair of images so that a pixel location in one of the pair of images has a corresponding pixel location in the other image, classify the visible image, annotate the infrared image based, at least in part, on the classification of the visible image, and add the annotated infrared image to a neural network training dataset for use in training a neural network for infrared image classification. A beamsplitter is arranged to reflect a first image of the scene towards the infrared camera and pass through a second image of the scene to the visible-light camera, and a first blackbody is attached thereto and positioned in a field of view of the infrared camera.
    Type: Application
    Filed: November 4, 2022
    Publication date: February 23, 2023
    Inventors: Austin A. Richards, Marcel Tremblay, Jeffrey D. Frank, Andres Prieto-Moreno
  • Publication number: 20230043342
    Abstract: Systems and methods include an image capture component configured to capture infrared images of a scene, and a logic device configured to identify a target in the images, acquire temperature data associated with the target based on the images, evaluate the temperature data and determine a corresponding temperature classification, and process the identified target in accordance with the temperature classification. The logic device identifies a person and tracks the person across a subset of the images, identify a measurement location for the target in a subset of the images based on target feature points identified by a neural network, and measure a temperature of the location using corresponding values from one or more captured thermal images. The logic device is further configured calculate a core body temperature of the target using the temperature data to determine whether the target has a fever and calibrate using one or more black bodies.
    Type: Application
    Filed: October 5, 2022
    Publication date: February 9, 2023
    Inventors: Louis Tremblay, Pierre M. Boulanger, Justin Muncaster, James Klingshirn, Robert Proebstel, Giovanni Lepore, Eugene Pochapsky, Katrin Strandemar, Nicholas Högasten, Karl Rydqvist, Theodore R. Hoelter, Jeremy P. Walker, Per O. Elmfors, Austin A. Richards, Sylan M. Rodriguez, John C. Day, Hugo Hedberg, Tien Nguyen, Fredrik Gihl, Rasmus Loman
  • Publication number: 20230040707
    Abstract: Multispectral imaging and related techniques are provided to detect thermal and non-thermal anomalies at reduced false detection rates. A multispectral imaging system includes an infrared light imaging sensor that captures infrared image data in a first spectral band, of a scene and an ultraviolet light imaging sensor that captures ultraviolet image data in a second spectral band, of the scene. The system also includes a processor that combines the ultraviolet image data and the infrared image data to generate composite image data, determines a ratio of a first radiant intensity in the first spectral band to a second radiant intensity in the second spectral band, from the composite image data, and determines whether the ratio corresponds to a predetermined radiant intensity ratio of a known thermal or electrical anomaly. The processor can detect the thermal or electrical anomaly when the determined ratio corresponds to the predetermined radiant intensity ratio.
    Type: Application
    Filed: October 7, 2022
    Publication date: February 9, 2023
    Inventors: Austin A. Richards, Nicholas Hogasten, Selah Argent
  • Publication number: 20230012236
    Abstract: A method involves use of multiple convolutional neural networks and multiple segmentation masks to programmatically generate a stool rating for a digital image of a diaper with stool. The method includes generating, by a first convolutional neural network, a first mask representing an identification of an area of the digital image that corresponds to stool, and a second mask representing an identification of an area of the digital image that corresponds to a diaper. The method further includes generating a third mask representing an intersection of the first and second masks, and generating a modified digital image utilizing the third mask. The method further includes determining, by a second convolutional neural network, a stool rating for the digital image of the diaper with stool by utilizing the modified digital image as input for the second convolutional neural network.
    Type: Application
    Filed: July 12, 2021
    Publication date: January 12, 2023
    Inventors: Brian Alexander Cohn, Austin Richard Napana Lamb, Jamie Chen, Melissa Trieu, Nikki Jamshidbaigi, Pavle Joshua Medvidovic, Craig Gravina
  • Publication number: 20220301303
    Abstract: Multispectral imaging and navigation systems and related techniques are provided to improve the operation of manned or unmanned mobile platforms, including mobile sensor or survey platforms. A multispectral navigation system includes a multispectral imaging system and a logic device configured to communicate with the multispectral imaging system. The multispectral imaging system includes a multispectral imaging module configured to provide multispectral image data corresponding to a projected course for a mobile platform. The logic device is configured to receive the multispectral image data, receive orientation and/or position data corresponding to the multispectral image data, and generate maneuvering obstacle information corresponding to the projected course based on the orientation and/or position data and the multispectral image data.
    Type: Application
    Filed: August 28, 2020
    Publication date: September 22, 2022
    Inventor: Austin A. Richards
  • Publication number: 20220291047
    Abstract: Various techniques are disclosed to reduce the effect of reflected infrared radiation on cooled thermal imaging systems. In one example, a system includes an integrated dewar cooler assembly (IDCA) configured to maintain an interior volume at a constant temperature. The system also includes a thermal imager disposed within the interior volume and configured to capture thermal images. The system also includes an optical element external to the IDCA and configured to provide reflected infrared radiation in a uniform distribution over a field of view of the thermal imager in response to emitted infrared radiation from the thermal imager. Additional methods, devices, and systems are also provided.
    Type: Application
    Filed: March 7, 2022
    Publication date: September 15, 2022
    Inventors: Sten Lindau, Austin A. Richards
  • Patent number: 11169028
    Abstract: Flight based infrared imaging systems and related techniques, and in particular UAS based thermal imaging systems, are provided to improve the monitoring capabilities of such systems over conventional infrared monitoring systems. An infrared imaging system is configured to compensate for various environmental effects (e.g., position and/or strength of the sun, atmospheric effects) to provide high resolution and accuracy radiometric measurements of targets imaged by the infrared imaging system. An infrared imaging system is alternatively configured to monitor and determine environmental conditions, modify data received from infrared imaging systems and other systems, modify flight paths and other commands, and/or create a representation of the environment.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: November 9, 2021
    Assignee: FLIR Systems, Inc.
    Inventors: Jeffrey D. Frank, Thomas J. Scanlon, Theodore R. Hoelter, Nicholas Hogasten, Austin A. Richards, Michael Kent, Julie R. Moreira, Pierre M. Boulanger, Raymond Valdes, Jonathan Li
  • Publication number: 20210342648
    Abstract: Systems and methods include an infrared camera configured to capture an infrared image of a scene, a visible light camera configured to capture a visible light image of the scene, and a logic device configured to simultaneously capture a pair of images of the scene comprising the infrared image of the scene and the visible image of the scene, align the pair of images so that a pixel location in one of the pair of images has a corresponding pixel location in the other image, classify the visible image, annotate the infrared image based, at least in part, on the classification of the visible image, and add the annotated infrared image to a neural network training dataset for use in training a neural network for infrared image classification.
    Type: Application
    Filed: April 30, 2021
    Publication date: November 4, 2021
    Inventors: Austin A. Richards, Andres Prieto-Moreno
  • Patent number: 11029211
    Abstract: Flight based infrared imaging systems and related techniques, and in particular UAS based thermal imaging systems, are provided to improve the monitoring capabilities of such systems over conventional infrared monitoring systems. An infrared imaging system is configured to compensate for various environmental effects (e.g., position and/or strength of the sun, atmospheric effects) to provide high resolution and accuracy radiometric measurements of targets imaged by the infrared imaging system. An infrared imaging system is alternatively configured to monitor and determine environmental conditions, modify data received from infrared imaging systems and other systems, modify flight paths and other commands, and/or create a representation of the environment.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: June 8, 2021
    Assignee: FLIR Systems, Inc.
    Inventors: Jeffrey D. Frank, Theodore R. Hoelter, Nicholas Högasten, Austin A. Richards, Michael Kent, Julie R. Moreira, Pierre Boulanger, Raymond Valdes, Jonathan Li
  • Patent number: 11010878
    Abstract: Various embodiments of the present disclosure may include an imaging system that allows for absolute radiometry of low dynamic range (LDR) radiometric images down-sampled from high dynamic range (HDR) radiometric thermal images. The imaging system may capture HDR images. The HDR images may be converted to LDR images by a transfer function. In certain embodiments, a video and/or a stream of HDR images may be captured. A sequence of frames may be defined for at least a plurality of the HDR images. Each of the HDR images of the sequence of frames may be converted to LDR images using the same transfer function.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: May 18, 2021
    Assignee: FLIR Systems, Inc.
    Inventors: Nicholas Hogasten, Austin A. Richards
  • Patent number: 10931934
    Abstract: A watercraft may include a safety system having an imaging component and a control component. The control component may modify the operation of the watercraft based on images from the imaging component. The imaging component may include a thermal imaging component and a non-thermal imaging component. The watercraft may include more than one imaging component disposed around the periphery of the watercraft to monitor a volume surrounding the watercraft for objects in the water such as debris, a person, and/or dock structures. Operating the watercraft based on the images may include operating propulsion and/or steering systems of the watercraft based on a detected object. The control component may operate the propulsion and/or steering systems to disable a propeller when a swimmer is detected, to avoid detected debris, and/or to perform or assist in performing docking maneuvers. The imaging components may include compact thermal imaging modules mounted on or within the hull of the watercraft.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: February 23, 2021
    Assignee: FLIR Belgium BVBA
    Inventors: Austin A. Richards, Peter A. Reid, Jay E. Robinson, Andrew C. Teich, Christopher Daniel Gatland, Gordon Pope
  • Patent number: 10909364
    Abstract: Various embodiments of the present disclosure may include an imaging system that includes a plurality of uncooled cameras configured to detect the presence of gas within a scene imaged. The plurality of cameras may include at least one broadband camera and at least one narrowband camera. The narrowband camera may include a filter or image data from the narrowband camera may be filtered to the band desired. The images captured by the broadband and narrowband cameras may be processed and/or analyzed to determine the presence of gas within the scene. An image may be generated incorporating the image data of the broadband and narrowband cameras and the presence of gas may be indicated within the image.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: February 2, 2021
    Assignee: FLIR SYSTEMS, INC.
    Inventors: Austin A. Richards, Nicholas Högasten
  • Patent number: 10571338
    Abstract: Imaging systems and methods are disclosed for generating enhanced visual representations of captured data such as infrared image data. For example, the perceived color distance or contrast between colors representing adjacent output levels (e.g., temperature or infrared intensity levels) are enhanced in visual representations of infrared images. According to embodiments, infrared image data values representing a scene may be mapped according to a color palette implemented using complementary colors as adjacent (e.g., successive) base colors or a sequence of colors, that repeats a predetermine set of hues with varying saturation and/or intensity, thereby increasing the color contrast between pixels representing subtle temperature differences in the scene. The color palette can be enlarged by mapping a larger number of distinct output levels to a larger sequence of colors, for example by increasing the bit-depth of the color palette, such that color transitions look smoother and more natural.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: February 25, 2020
    Assignee: FLIR Systems, Inc.
    Inventors: Austin A. Richards, Charles W. Handley
  • Patent number: 10425595
    Abstract: Modular infrared imaging systems and methods disclosed herein, in accordance with one or more embodiments, provide for capturing an infrared image, sensing a mode of operation, processing the captured infrared image according to the sensed mode of operation, generating a processed infrared image based on the sensed mode of operation, and displaying the processed infrared image.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: September 24, 2019
    Assignee: FLIR SYSTEMS, INC.
    Inventors: Jeffrey D. Frank, Yves Chappaz, Mary L. Deal, Patrick B. Richardson, Austin A. Richards, Nicholas Högasten, James T. Woolaway
  • Publication number: 20190251681
    Abstract: Various embodiments of the present disclosure may include an imaging system that allows for absolute radiometry of low dynamic range (LDR) radiometric images down-sampled from high dynamic range (HDR) radiometric thermal images. The imaging system may capture HDR images. The HDR images may be converted to LDR images by a transfer function. In certain embodiments, a video and/or a stream of HDR images may be captured. A sequence of frames may be defined for at least a plurality of the HDR images. Each of the HDR images of the sequence of frames may be converted to LDR images using the same transfer function.
    Type: Application
    Filed: April 24, 2019
    Publication date: August 15, 2019
    Inventors: Nicholas Hogasten, Austin A. Richards
  • Publication number: 20180283953
    Abstract: Flight based infrared imaging systems and related techniques, and in particular UAS based thermal imaging systems, are provided to improve the monitoring capabilities of such systems over conventional infrared monitoring systems. An infrared imaging system is configured to compensate for various environmental effects (e.g., position and/or strength of the sun, atmospheric effects) to provide high resolution and accuracy radiometric measurements of targets imaged by the infrared imaging system. An infrared imaging system is alternatively configured to monitor and determine environmental conditions, modify data received from infrared imaging systems and other systems, modify flight paths and other commands, and/or create a representation of the environment.
    Type: Application
    Filed: June 4, 2018
    Publication date: October 4, 2018
    Inventors: Jeffrey D. Frank, Thomas J. Scanlon, Theodore R. Hoelter, Nicholas Hogasten, Austin A. Richards, Michael Kent, Julie R. Moreira, Pierre M. Boulanger, Raymond Valdes, Jonathan Li
  • Publication number: 20180276469
    Abstract: Various embodiments of the present disclosure may include an imaging system that includes a plurality of uncooled cameras configured to detect the presence of gas within a scene imaged. The plurality of cameras may include at least one broadband camera and at least one narrowband camera. The narrowband camera may include a filter or image data from the narrowband camera may be filtered to the band desired. The images captured by the broadband and narrowband cameras may be processed and/or analyzed to determine the presence of gas within the scene. An image may be generated incorporating the image data of the broadband and narrowband cameras and the presence of gas may be indicated within the image.
    Type: Application
    Filed: May 25, 2018
    Publication date: September 27, 2018
    Inventors: Austin A. Richards, Nicholas Högasten
  • Publication number: 20180266887
    Abstract: Flight based infrared imaging systems and related techniques, and in particular UAS based thermal imaging systems, are provided to improve the monitoring capabilities of such systems over conventional infrared monitoring systems. An infrared imaging system is configured to compensate for various environmental effects (e.g., position and/or strength of the sun, atmospheric effects) to provide high resolution and accuracy radiometric measurements of targets imaged by the infrared imaging system. An infrared imaging system is alternatively configured to monitor and determine environmental conditions, modify data received from infrared imaging systems and other systems, modify flight paths and other commands, and/or create a representation of the environment.
    Type: Application
    Filed: May 23, 2018
    Publication date: September 20, 2018
    Inventors: Jeffrey D. Frank, Theodore R. Hoelter, Nicholas Högasten, Austin A. Richards, Michael Kent, Julie R. Moreira, Pierre Boulanger, Raymond Valdes, Jonathan Li