Patents by Inventor Austin ECHELMEIER

Austin ECHELMEIER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240068965
    Abstract: Methods and systems are provided for serial femtosecond crystallography for reducing the vast amount of waste of injected crystals practiced with traditional continuous flow injections. A micrometer-scale 3-D printed water-in-oil droplet generator device includes an oil phase inlet channel, an aqueous phase inlet channel, a droplet flow outlet channel, and two embedded non-contact electrodes. The inlet and outlet channels are connected internally at a junction. The electrodes comprise gallium metal injected within the 3-D printed device. Voltage across the electrodes generates water-in-oil droplets, determines a rate for a series of droplets, or triggers a phase shift in the droplets. An external trigger generates the droplets based on the frequency of an XFEL utilized in droplet detection, thereby synchronizing a series of droplets with x-ray pulses for efficient crystal detection. The generated droplets can be coupled to an SFX with XFEL experiment compatible with common liquid injector such as a GDVN.
    Type: Application
    Filed: November 7, 2023
    Publication date: February 29, 2024
    Inventors: Alexandra ROS, Daihyun KIM, Austin ECHELMEIER, Jorvani CRUZ VILLARREAL, Ana EGATZ-GOMEZ, Sebastian QUINTANA
  • Patent number: 11867644
    Abstract: Methods and systems are provided for serial femtosecond crystallography for reducing the vast amount of waste of injected crystals practiced with traditional continuous flow injections. A micrometer-scale 3-D printed water-in-oil droplet generator device includes an oil phase inlet channel, an aqueous phase inlet channel, a droplet flow outlet channel, and two embedded non-contact electrodes. The inlet and outlet channels are connected internally at a junction. The electrodes comprise gallium metal injected within the 3-D printed device. Voltage across the electrodes generates water-in-oil droplets, determines a rate for a series of droplets, or triggers a phase shift in the droplets. An external trigger generates the droplets based on the frequency of an XFEL utilized in droplet detection, thereby synchronizing a series of droplets with x-ray pulses for efficient crystal detection. The generated droplets can be coupled to an SFX with XFEL experiment compatible with common liquid injector such as a GDVN.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: January 9, 2024
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Alexandra Ros, Daihyun Kim, Austin Echelmeier, Jorvani Cruz Villarreal, Ana Egatz-Gomez, Sebastian Quintana
  • Patent number: 11318487
    Abstract: Systems and methods for performing serial crystallography by providing an aqueous suspension of a crystal sample to a T-junction at a first flow rate and providing an immiscible oil fluid to the T-junction at a second flow rate. The aqueous suspension and the oil are combined at the T-junction to produce a co-flow output fluid including a parallel co-flow of the aqueous suspension and the oil in the same output channel. The co-flow output fluid is ejected as a jet stream through a nozzle and the sample flow rate in the crystal sample in the jet stream is adjusted by adjusting the first flow rate of the aqueous suspension and the second flow rate of the oil. By combining the aqueous sample and the oil in this manner, the output of the jet stream can be regulated for compatibility with X-ray free electron laser serial crystallography.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: May 3, 2022
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Alexandra Ros, Daihyun Kim, Austin Echelmeier, Jorvani Cruz Villarreal, Diandra Doppler, Richard Kirian, Reza Nazari
  • Publication number: 20210302334
    Abstract: Methods and systems are provided for serial femtosecond crystallography for reducing the vast amount of waste of injected crystals practiced with traditional continuous flow injections. A micrometer-scale 3-D printed water-in-oil droplet generator device includes an oil phase inlet channel, an aqueous phase inlet channel, a droplet flow outlet channel, and two embedded non-contact electrodes. The inlet and outlet channels are connected internally at a junction. The electrodes comprise gallium metal injected within the 3-D printed device. Voltage across the electrodes generates water-in-oil droplets, determines a rate for a series of droplets, or triggers a phase shift in the droplets. An external trigger generates the droplets based on the frequency of an XFEL utilized in droplet detection, thereby synchronizing a series of droplets with x-ray pulses for efficient crystal detection. The generated droplets can be coupled to an SFX with XFEL experiment compatible with common liquid injector such as a GDVN.
    Type: Application
    Filed: April 1, 2021
    Publication date: September 30, 2021
    Inventors: Alexandra ROS, Daihyun KIM, Austin ECHELMEIER, Jorvani CRUZ VILLARREAL, Ana EGATZ-GOMEZ, Sebastian QUINTANA
  • Patent number: 10969350
    Abstract: Methods and systems are provided for serial femtosecond crystallography for reducing the vast amount of waste of injected crystals practiced with traditional continuous flow injections. A micrometer-scale 3-D printed water-in-oil droplet generator device includes an oil phase inlet channel, an aqueous phase inlet channel, a droplet flow outlet channel, and two embedded non-contact electrodes. The inlet and outlet channels are connected internally at a junction. The electrodes comprise gallium metal injected within the 3-D printed device. Voltage across the electrodes generates water-in-oil droplets, determines a rate for a series of droplets, or triggers a phase shift in the droplets. An external trigger generates the droplets based on the frequency of an XFEL utilized in droplet detection, thereby synchronizing a series of droplets with x-ray pulses for efficient crystal detection. The generated droplets can be coupled to an SFX with XFEL experiment compatible with common liquid injector such as a GDVN.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: April 6, 2021
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STAT
    Inventors: Alexandra Ros, Daihyun Kim, Austin Echelmeier, Jorvani Cruz Villarreal, Ana Egatz-Gomez, Sebastian Quintana
  • Publication number: 20200360944
    Abstract: Systems and methods for performing serial crystallography by providing an aqueous suspension of a crystal sample to a T-junction at a first flow rate and providing an immiscible oil fluid to the T-junction at a second flow rate. The aqueous suspension and the oil are combined at the T-junction to produce a co-flow output fluid including a parallel co-flow of the aqueous suspension and the oil in the same output channel. The co-flow output fluid is ejected as a jet stream through a nozzle and the sample flow rate in the crystal sample in the jet stream is adjusted by adjusting the first flow rate of the aqueous suspension and the second flow rate of the oil. By combining the aqueous sample and the oil in this manner, the output of the jet stream can be regulated for compatibility with X-ray free electron laser serial crystallography.
    Type: Application
    Filed: May 12, 2020
    Publication date: November 19, 2020
    Inventors: Alexandra Ros, Daihyun Kim, Austin Echelmeier, Jorvani Cruz Villarreal, Diandra Doppler, Richard Kirian, Reza Nazari
  • Publication number: 20200141886
    Abstract: Methods and systems are provided for serial femtosecond crystallography for reducing the vast amount of waste of injected crystals practiced with traditional continuous flow injections. A micrometer-scale 3-D printed water-in-oil droplet generator device includes an oil phase inlet channel, an aqueous phase inlet channel, a droplet flow outlet channel, and two embedded non-contact electrodes. The inlet and outlet channels are connected internally at a junction. The electrodes comprise gallium metal injected within the 3-D printed device. Voltage across the electrodes generates water-in-oil droplets, determines a rate for a series of droplets, or triggers a phase shift in the droplets. An external trigger generates the droplets based on the frequency of an XFEL utilized in droplet detection, thereby synchronizing a series of droplets with x-ray pulses for efficient crystal detection. The generated droplets can be coupled to an SFX with XFEL experiment compatible with common liquid injector such as a GDVN.
    Type: Application
    Filed: May 22, 2018
    Publication date: May 7, 2020
    Inventors: Alexandra ROS, Daihyun KIM, Austin ECHELMEIER, Jorvani VILLARREAL, Ana EGATZ-GOMEZ, Sebastian QUINTANA
  • Patent number: 10557807
    Abstract: A 3D printed hybrid nozzle device combining a microfluidic mixer with a liquid jet injector that addresses the bottleneck of investigating substrate-initiated biological reaction paths employing serial crystallography with XFELs. The hybrid nozzle provides for injecting aqueous protein crystal jets after fast mixing (<5 ms), reaching reaction time points (e.g., about 10 ms to about 150 ms) suitable to resolve enzyme kinetics.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: February 11, 2020
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Alexandra Ros, Gerrit Brehm, Garrett Nelson, John Spence, Uwe Weierstall, Austin Echelmeier
  • Publication number: 20190178822
    Abstract: A 3D printed hybrid nozzle device combining a microfluidic mixer with a liquid jet injector that addresses the bottleneck of investigating substrate-initiated biological reaction paths employing serial crystallography with XFELs. The hybrid nozzle provides for injecting aqueous protein crystal jets after fast mixing (<5 ms), reaching reaction time points (e.g., about 10 ms to about 150 ms) suitable to resolve enzyme kinetics.
    Type: Application
    Filed: May 22, 2018
    Publication date: June 13, 2019
    Inventors: Alexandra ROS, Gerrit BREHM, Garrett NELSON, John SPENCE, Uwe WEIERSTALL, Austin ECHELMEIER