Patents by Inventor Avi Feshali

Avi Feshali has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11846805
    Abstract: Aspects of the present disclosure are directed to structural modifications introduced in a waveguide structure in order to more tightly pack adjacent waveguide turns in an optical gyroscope fabricated on a planar silicon platform as a photonic integrated circuit. Increasing number of turns of the gyroscope coil increases total waveguide length as well as enclosed area of the gyroscope loop, which translates to increased sensitivity to rotational measurement.
    Type: Grant
    Filed: September 12, 2022
    Date of Patent: December 19, 2023
    Assignee: Anello Photonics, Inc.
    Inventors: Avi Feshali, Mario Paniccia, Warren Bruce Jin
  • Patent number: 11803013
    Abstract: Aspects of the present disclosure are directed to fabrication of large-footprint chips having integrated photonic components comprising low-loss optical waveguides. The large footprint chips require the use of multiple reticles during fabrication. Stitching adjacent reticle fields seamlessly is accomplished by overlaying into adjacent reticle fields, tapering waveguide ends, and using strategically placed alignment marks in the die.
    Type: Grant
    Filed: March 31, 2022
    Date of Patent: October 31, 2023
    Assignee: Anello Photonics, Inc.
    Inventors: Avi Feshali, Warren Bruce Jin, Mario Paniccia
  • Patent number: 11788841
    Abstract: Aspects of the present disclosure are directed to configurations of compact ultra-low loss integrated photonics-based waveguides for optical gyroscope applications, and the methods of fabricating those waveguides for ease of large scale manufacturing. Four main process flows are described: (1) process flow based on a repeated sequence of oxide deposition and anneal; (2) chemical-mechanical polishing (CMP)-based process flow followed by wafer bonding; (3) Damascene process flow followed by oxide deposition and anneal, or wafer bonding; and (4) CMP-based process flows followed by oxide deposition. Any combination of these process flows may be adopted to meet the end goal of fabricating optical gyroscope waveguides in one or more layers on a silicon substrate using standard silicon fabrication technologies.
    Type: Grant
    Filed: September 1, 2022
    Date of Patent: October 17, 2023
    Assignee: Anello Photonics, Inc.
    Inventors: Mario Paniccia, Avi Feshali
  • Patent number: 11782211
    Abstract: Aspects of the present disclosure are directed to process flow to fabricate a waveguide structure with a silicon nitride core having atomic-level smooth sidewalls achieved by wet etching instead of the conventional dry etching process. A mask is pre-biased to account for lateral etching during the wet-etching steps.
    Type: Grant
    Filed: December 16, 2022
    Date of Patent: October 10, 2023
    Assignee: Anello Photonics, Inc.
    Inventor: Avi Feshali
  • Publication number: 20230266535
    Abstract: Disclosed herein are configurations and methods to produce very low loss waveguide structures, which can be single-layer or multi-layer. These waveguide structures can be used as a sensing component of a small-footprint integrated optical gyroscope. By using pure fused silica substrates as both top and bottom cladding around a SiN waveguide core, the propagation loss can be well below 0.1 db/meter. Low-loss waveguide-based gyro coils may be patterned in the shape of a spiral (circular or rectangular or any other shape), that may be distributed among one or more of vertical planes to increase the length of the optical path while avoiding the increased loss caused by intersecting waveguides in the state-of-the-art designs. Low-loss adiabatic tapers may be used for a coil formed in a single layer where an output waveguide crosses the turns of the spiraling coil.
    Type: Application
    Filed: April 24, 2023
    Publication date: August 24, 2023
    Inventors: Mario Paniccia, Avi Feshali
  • Publication number: 20230185023
    Abstract: Aspects of the present disclosure are directed to structural modifications introduced in a waveguide structure in order to more tightly pack adjacent waveguide turns in an optical gyroscope fabricated on a planar silicon platform as a photonic integrated circuit. Increasing number of turns of the gyroscope coil increases total waveguide length as well as enclosed area of the gyroscope loop, which translates to increased sensitivity to rotational measurement.
    Type: Application
    Filed: September 12, 2022
    Publication date: June 15, 2023
    Inventors: Avi Feshali, Mario Paniccia, Warren Bruce Jin
  • Patent number: 11639997
    Abstract: Technology for light detection and ranging (LIDAR) sensor can include an optical signal source, an optical modulation array and optical detector on the same integrated circuit (IC) chip, multi-chip module (MCM) or similar solid-state package.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: May 2, 2023
    Assignee: Intel Corporation
    Inventors: Avi Feshali, Haisheng Rong
  • Patent number: 11635569
    Abstract: Disclosed herein are configurations and methods to produce very low loss waveguide structures, which can be single-layer or multi-layer. These waveguide structures can be used as a sensing component of a small-footprint integrated optical gyroscope. By using pure fused silica substrates as both top and bottom cladding around a SiN waveguide core, the propagation loss can be well below 0.1 db/meter. Low-loss waveguide-based gyro coils may be patterned in the shape of a spiral (circular or rectangular or any other shape), that may be distributed among one or more of vertical planes to increase the length of the optical path while avoiding the increased loss caused by intersecting waveguides in the state-of-the-art designs. Low-loss adiabatic tapers may be used for a coil formed in a single layer where an output waveguide crosses the turns of the spiraling coil.
    Type: Grant
    Filed: September 13, 2021
    Date of Patent: April 25, 2023
    Assignee: Anello Photonics, Inc.
    Inventors: Mario Paniccia, Avi Feshali
  • Publication number: 20230121996
    Abstract: Aspects of the present disclosure are directed to process flow to fabricate a waveguide structure with a silicon nitride core having atomic-level smooth sidewalls achieved by wet etching instead of the conventional dry etching process. A mask is pre-biased to account for lateral etching during the wet-etching steps.
    Type: Application
    Filed: December 16, 2022
    Publication date: April 20, 2023
    Inventor: Avi Feshali
  • Publication number: 20230003526
    Abstract: Aspects of the present disclosure are directed to configurations of compact ultra-low loss integrated photonics-based waveguides for optical gyroscope applications, and the methods of fabricating those waveguides for ease of large scale manufacturing. Four main process flows are described: (1) process flow based on a repeated sequence of oxide deposition and anneal; (2) chemical-mechanical polishing (CMP)-based process flow followed by wafer bonding; (3) Damascene process flow followed by oxide deposition and anneal, or wafer bonding; and (4) CMP-based process flows followed by oxide deposition. Any combination of these process flows may be adopted to meet the end goal of fabricating optical gyroscope waveguides in one or more layers on a silicon substrate using standard silicon fabrication technologies.
    Type: Application
    Filed: September 1, 2022
    Publication date: January 5, 2023
    Inventors: Mario Paniccia, Avi Feshali
  • Patent number: 11543589
    Abstract: Aspects of the present disclosure are directed to process flow to fabricate a waveguide structure with a silicon nitride core having atomic-level smooth sidewalls achieved by wet etching instead of the conventional dry etching process.
    Type: Grant
    Filed: September 14, 2021
    Date of Patent: January 3, 2023
    Assignee: Anello Photonics, Inc.
    Inventor: Avi Feshali
  • Patent number: 11513288
    Abstract: In integrated optical structures (e.g., silicon-to-silicon-nitride mode converters) implemented in semiconductor-on-insulator substrates, wire waveguides whose sidewalls substantially consist of portions coinciding with crystallographic planes and do not extend laterally beyond the top surface of the wire waveguide may provide benefits in performance and/or manufacturing needs. Such wire waveguides may be manufactured, e.g., using a dry-etch of the semiconductor device layer down to the insulator layer to form a wire waveguide with exposed sidewalls, followed by a smoothing crystallographic wet etch.
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: November 29, 2022
    Assignee: OpenLight Photonics, Inc.
    Inventors: Avi Feshali, John Hutchinson, Jared Bauters
  • Patent number: 11506762
    Abstract: An optical device includes a substrate including an optical waveguide running through the substrate. An optical transmitter mounted on the substrate in a first location includes at least one optical emitter, which emits a primary beam of optical radiation toward a target and emits a secondary beam of the optical radiation into the optical waveguide. An optical receiver mounted on the substrate in a second location includes at least one optical sensor, which receives the optical radiation that is reflected from the target and outputs a primary signal in response thereto, and receives the secondary beam of the optical radiation from the waveguide and outputs a reference signal in response to the secondary beam. A processor receives and processes the primary signal and the reference signal in order to extract information with respect to the target.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: November 22, 2022
    Assignee: APPLE INC.
    Inventor: Avi Feshali
  • Patent number: 11493343
    Abstract: Aspects of the present disclosure are directed to monolithically integrating an optical gyroscope fabricated on a planar silicon platform as a photonic integrated circuit with a MEMS accelerometer on the same die. The accelerometer can be controlled by electronic circuitry that controls the optical gyroscope. The optical gyroscope may have a microresonator ring or a multi-turn waveguide coil. Gaps may be introduced between adjacent waveguide turns to reduce cross-talk and improve sensitivity and packing density of the optical gyroscope.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: November 8, 2022
    Assignee: Anello Photonics, Inc.
    Inventors: Avi Feshali, Mike Horton
  • Publication number: 20220326014
    Abstract: Aspects of the present disclosure are directed to monolithically integrating an optical gyroscope fabricated on a planar silicon platform as a photonic integrated circuit with a MEMS accelerometer on the same die. The accelerometer can be controlled by electronic circuitry that controls the optical gyroscope. The optical gyroscope may have a microresonator ring or a multi-turn waveguide coil. Gaps may be introduced between adjacent waveguide turns to reduce cross-talk and improve sensitivity and packing density of the optical gyroscope.
    Type: Application
    Filed: June 27, 2022
    Publication date: October 13, 2022
    Inventors: Avi Feshali, Mike Horton
  • Publication number: 20220317373
    Abstract: Aspects of the present disclosure are directed to fabrication of large-footprint chips having integrated photonic components comprising low-loss optical waveguides. The large footprint chips require the use of multiple reticles during fabrication. Stitching adjacent reticle fields seamlessly is accomplished by overlaying into adjacent reticle fields, tapering waveguide ends, and using strategically placed alignment marks in the die.
    Type: Application
    Filed: March 31, 2022
    Publication date: October 6, 2022
    Inventors: Avi Feshali, Warren Bruce Jin, Mario Paniccia
  • Patent number: 11442226
    Abstract: Aspects of the present disclosure are directed to structural modifications introduced in a waveguide structure in order to more tightly pack adjacent waveguide turns in an optical gyroscope fabricated on a planar silicon platform as a photonic integrated circuit. Increasing number of turns of the gyroscope coil increases total waveguide length as well as enclosed area of the gyroscope loop, which translates to increased sensitivity to rotational measurement.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: September 13, 2022
    Assignee: ANELLO PHOTONICS, INC.
    Inventors: Avi Feshali, Mario Paniccia, Warren Bruce Jin
  • Patent number: 11435184
    Abstract: Aspects of the present disclosure are directed to configurations of compact ultra-low loss integrated photonics-based waveguides for optical gyroscope applications, and the methods of fabricating those waveguides for ease of large scale manufacturing. Four main process flows are described: (1) process flow based on a repeated sequence of oxide deposition and anneal; (2) chemical-mechanical polishing (CMP)-based process flow followed by wafer bonding; (3) Damascene process flow followed by oxide deposition and anneal, or wafer bonding; and (4) CMP-based process flows followed by oxide deposition. Any combination of these process flows may be adopted to meet the end goal of fabricating optical gyroscope waveguides in one or more layers on a silicon substrate using standard silicon fabrication technologies.
    Type: Grant
    Filed: November 29, 2021
    Date of Patent: September 6, 2022
    Assignee: Anello Photonics, Inc.
    Inventors: Mario Paniccia, Avi Feshali
  • Publication number: 20220270986
    Abstract: When III-V semiconductor material is bonded to an oxide material, water molecules can degrade the bonding if they become trapped at the interface between the III-V material and the oxide material. Because water molecules can diffuse readily through oxide material, and may not diffuse as readily through III-V material or through silicon, forcing the III-V material against the oxide material can force water molecules at the interface into the oxide material and away from the interface. Water molecules present at the interface can be forced during manufacturing through vertical channels in a silicon layer into a buried oxide layer thereby to enhance bonding between the III-V material and the oxide material. Water molecules can be also forced through lateral channels in the oxide material, past a periphery of the III-V material, and, through diffusion, out of the oxide material into the atmosphere.
    Type: Application
    Filed: March 1, 2022
    Publication date: August 25, 2022
    Inventors: Avi Feshali, John Hutchinson
  • Patent number: 11371843
    Abstract: Aspects of the present disclosure are directed to monolithically integrating an optical gyroscope fabricated on a planar silicon platform as a photonic integrated circuit with a MEMS accelerometer on the same die. The accelerometer can be controlled by electronic circuitry that controls the optical gyroscope. Gaps may be introduced between adjacent waveguide turns to reduce cross-talk and improve sensitivity and packing density of the optical gyroscope.
    Type: Grant
    Filed: July 1, 2021
    Date of Patent: June 28, 2022
    Assignee: Anello Photonics, Inc.
    Inventors: Avi Feshali, Mike Horton