Patents by Inventor Avinash V. Taware

Avinash V. Taware has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11536132
    Abstract: A multiple parameter sensing leak detection system may include one or more multi-parameter sensing modules capable of simultaneously measuring downhole temperature, pressure, and acoustic signals. The temperature and pressure detectors may include quartz based sensing elements, and the acoustic detector may include piezoelectric based sensing elements. In one or more embodiments, a plurality of sensing modules may be carried on a caliper for allowing radial identification of leak location. In one or more embodiments, multiple calipers, each carrying a circumferential arrangement of sensing modules may be used to identify annular or inter-annular leakage beyond production tubing using triangulation techniques. A leak analysis method identifies if relative pressure and temperature variation amplitudes fall outside leak thresholds and if power spectral density from noise has anomalous frequency signatures.
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: December 27, 2022
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Hua Xia, Clovis S. Bonavides, Avinash V. Taware
  • Patent number: 10215016
    Abstract: A distributed acoustic sensing cable package having a polymer composite extruded over an optical waveguide to encase the waveguide and to form a crystalline matrix layer acoustically coupled to the waveguide. The crystalline matrix includes reinforcement fibers to further enhance transmission of a cable strain to the optical waveguide. During manufacture of the cable, the polymer composite may be extruded over the optical waveguide and subsequently subjected to heat treatment to increase the crystallinity of the polymer composite and increase the elastic modulus. Both axial and radial strain fields are effectively interact with cased fiber waveguide for producing measurable phase shift signal for distributed acoustic noise detection.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: February 26, 2019
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Hua Xia, Avinash V. Taware, David A. Barfoot
  • Patent number: 10215015
    Abstract: A distributed acoustic sensing cable package having a polymer composite extruded over an optical waveguide to encase the waveguide and to form a crystalline matrix layer acoustically coupled to the waveguide. The crystalline matrix includes reinforcement fibers to further enhance transmission of a cable strain to the optical waveguide. During manufacture of the cable, the polymer composite may be extruded over the optical waveguide and subsequently subjected to heat treatment to increase the crystallinity of the polymer composite and increase the elastic modulus. Both axial and radial strain fields are effectively interact with cased fiber waveguide for producing measurable phase shift signal for distributed acoustic noise detection.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: February 26, 2019
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Hua Xia, Avinash V. Taware, David A. Barfoot
  • Patent number: 10173381
    Abstract: A distributed acoustic sensing cable package having a polymer composite extruded over an optical waveguide to encase the waveguide and to form a crystalline matrix layer acoustically coupled to the waveguide. The crystalline matrix includes reinforcement fibers to further enhance transmission of a cable strain to the optical waveguide. During manufacture of the cable, the polymer composite may be extruded over the optical waveguide and subsequently subjected to heat treatment to increase the crystallinity of the polymer composite and increase the elastic modulus. Both axial and radial strain fields are effectively interact with cased fiber waveguide for producing measurable phase shift signal for distributed acoustic noise detection.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: January 8, 2019
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Hua Xia, Avinash V. Taware, David A. Barfoot
  • Publication number: 20170350234
    Abstract: A multiple parameter sensing leak detection system may include one or more multi-parameter sensing modules capable of simultaneously measuring downhole temperature, pressure, and acoustic signals. The temperature and pressure detectors may include quartz based sensing elements, and the acoustic detector may include piezoelectric based sensing elements. In one or more embodiments, a plurality of sensing modules may be carried on a caliper for allowing radial identification of leak location. In one or more embodiments, multiple calipers, each carrying a circumferential arrangement of sensing modules may be used to identify annular or inter-annular leakage beyond production tubing using triangulation techniques. A leak analysis method identifies if relative pressure and temperature variation amplitudes fall outside leak thresholds and if power spectral density from noise has anomalous frequency signatures.
    Type: Application
    Filed: December 31, 2014
    Publication date: December 7, 2017
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Hua Xia, Clovis S. Bonavides, Avinash V. Taware
  • Publication number: 20170260847
    Abstract: A distributed acoustic sensing cable package having a polymer composite extruded over an optical waveguide to encase the waveguide and to form a crystalline matrix layer acoustically coupled to the waveguide. The crystalline matrix includes reinforcement fibers to further enhance transmission of a cable strain to the optical waveguide. During manufacture of the cable, the polymer composite may be extruded over the optical waveguide and subsequently subjected to heat treatment to increase the crystallinity of the polymer composite and increase the elastic modulus. Both axial and radial strain fields are effectively interact with cased fiber waveguide for producing measurable phase shift signal for distributed acoustic noise detection.
    Type: Application
    Filed: March 10, 2015
    Publication date: September 14, 2017
    Inventors: Hua Xia, Avinash V. Taware, David A. Barfoot
  • Publication number: 20170259513
    Abstract: A distributed acoustic sensing cable package having a polymer composite extruded over an optical waveguide to encase the waveguide and to form a crystalline matrix layer acoustically coupled to the waveguide. The crystalline matrix includes reinforcement fibers to further enhance transmission of a cable strain to the optical waveguide. During manufacture of the cable, the polymer composite may be extruded over the optical waveguide and subsequently subjected to heat treatment to increase the crystallinity of the polymer composite and increase the elastic modulus. Both axial and radial strain fields are effectively interact with cased fiber waveguide for producing measurable phase shift signal for distributed acoustic noise detection.
    Type: Application
    Filed: March 10, 2015
    Publication date: September 14, 2017
    Inventors: Hua Xia, Avinash V. Taware, David A. Barfoot
  • Publication number: 20170260848
    Abstract: A distributed acoustic sensing cable package having a polymer composite extruded over an optical waveguide to encase the waveguide and to form a crystalline matrix layer acoustically coupled to the waveguide. The crystalline matrix includes reinforcement fibers to further enhance transmission of a cable strain to the optical waveguide. During manufacture of the cable, the polymer composite may be extruded over the optical waveguide and subsequently subjected to heat treatment to increase the crystallinity of the polymer composite and increase the elastic modulus. Both axial and radial strain fields are effectively interact with cased fiber waveguide for producing measurable phase shift signal for distributed acoustic noise detection.
    Type: Application
    Filed: March 10, 2015
    Publication date: September 14, 2017
    Inventors: Hua Xia, Avinash V. Taware, David A. Barfoot