Patents by Inventor Avishai Ofan

Avishai Ofan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230301606
    Abstract: A medical imaging system is provided. Imaging detector columns are installed in a gantry to receive imaging information about a subject. Imaging detector columns can extend and retract radially as well as be rotated orbitally around the gantry. The system can automatically adjust setup configuration and an imaging operation based on subject shape estimation information.
    Type: Application
    Filed: May 25, 2023
    Publication date: September 28, 2023
    Inventors: IIan Levin, Yaron Hefetz, Avi Bar-Shalev, Avishai Ofan
  • Patent number: 11696732
    Abstract: A medical imaging system is provided. Imaging detector columns are installed in a gantry to receive imaging information about a subject. Imaging detector columns can extend and retract radially as well as be rotated orbitally around the gantry. The system can automatically adjust setup configuration and an imaging operation based on subject shape estimation information.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: July 11, 2023
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Ilan Levin, Yaron Hefetz, Avi Bar-Shalev, Avishai Ofan
  • Patent number: 10481285
    Abstract: A detector assembly is provided that includes a semiconductor detector, plural pixelated anodes, and at least one processor. The plural pixelated anodes are disposed on a surface of the semiconductor detector. Each pixelated anode is configured to generate a primary signal responsive to reception of a photon and to generate at least one secondary signal responsive to an induced charge caused by reception of a photon by at least one surrounding anode. The at least one processor is operably coupled to the pixelated anodes and is configured to acquire a primary signal from one of the anodes responsive to reception of a photon; acquire at least one secondary signal from at least one neighboring pixel; and determine a depth of interaction in the semiconductor detector for the reception of the photon by the one of the anodes using the at least one secondary signal.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: November 19, 2019
    Assignee: General Electric Company
    Inventors: Arie Shahar, Yaron Glazer, Moshe Cohen-Erner, Avishai Ofan
  • Publication number: 20190117173
    Abstract: A medical imaging system is provided. Imaging detector columns are installed in a gantry to receive imaging information about a subject. Imaging detector columns can extend and retract radially as well as be rotated orbitally around the gantry. The system can automatically adjust setup configuration and an imaging operation based on subject shape estimation information.
    Type: Application
    Filed: December 17, 2018
    Publication date: April 25, 2019
    Inventors: Ilan Levin, Yaron Hefetz, Avi Bar-Shalev, Avishai Ofan
  • Patent number: 10247834
    Abstract: A radiation detector assembly is provided that includes a semiconductor detector, a collimator, plural pixelated anodes, and at least one processor. The collimator has openings defining pixels. Each pixelated anode is configured to generate a primary signal responsive to reception of a photon and to generate at least one secondary signal responsive to reception of a photon by at least one surrounding anode. Each pixelated anode includes a first portion and a second portion located in different openings of the collimator. The at least one processor is operably coupled to the pixelated anodes, and configured to acquire a primary signal from one of the pixelated anodes; acquire at least one secondary signal from at least one neighboring pixelated anode; and determine a location for the reception of the photon using the primary signal and the at least one secondary signal.
    Type: Grant
    Filed: August 15, 2018
    Date of Patent: April 2, 2019
    Assignee: General Electric Company
    Inventors: Arie Shahar, Yaron Glazer, Jean-Paul Bouhnik, Avishai Ofan, Moshe Cohen-Erner
  • Patent number: 10188358
    Abstract: A medical imaging system is provided. Imaging detector columns are installed in a gantry to receive imaging information about a subject. Imaging detector columns can extend and retract radially as well as be rotated orbitally around the gantry. The system can automatically adjust setup configuration and an imaging operation based on subject shape estimation information.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: January 29, 2019
    Assignee: General Electric Company
    Inventors: Ilan Levin, Yaron Hefetz, Avi Bar-Shalev, Avishai Ofan
  • Patent number: 9954132
    Abstract: A radiation detector is provided including a cathode, an anode, and a semiconductor wafer. The semiconductor wafer has opposed first and second surfaces. The cathode is mounted to the first surface, and the anode is mounted to the second surface. The semiconductor wafer is configured to be biased by a voltage between the cathode and the anode to generate an electrical field in the semiconductor wafer and to generate electrical signals responsive to absorbed radiation. The electrical field has an intensity having at least one local maximum disposed proximate to a corresponding at least one of the first surface or second surface.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: April 24, 2018
    Assignee: General Electric Company
    Inventors: Arie Shahar, Yaron Glazer, Jeffrey Levy, Avishai Ofan, Rotem Har-Lavan
  • Patent number: 9927539
    Abstract: A radiation detector assembly is provided that includes a semiconductor detector having a surface, plural pixelated anodes, and at least one processor. The pixelated anodes are disposed on the surface. Each pixelated anode is configured to generate a primary signal responsive to reception of a photon by the pixelated anode and to generate at least one secondary signal responsive to an induced charge caused by reception of a photon by at least one adjacent anode. The at least one processor is operably coupled to the pixelated anodes. The at least one processor configured to define sub-pixels for each pixelated anode; acquire signals corresponding to acquisition events from the pixelated anodes; determine sub-pixel locations for the acquisition events using the signals; and apply at least one calibration parameter on a per sub-pixel basis for the acquisition events based on the determined sub-pixel locations.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: March 27, 2018
    Assignee: General Electric Company
    Inventors: Arie Shahar, Mark David Fries, Yaron Glazer, Avishai Ofan
  • Patent number: 9891328
    Abstract: A radiation detector processing assembly is provided including at least one application specific integrated circuit (ASIC). The radiation detector processing assembly includes plural input channels, a common readout, and a readout channel. Each input channel is configured to receive an input corresponding to a detection event from a pixel of a pixelated detector. The common readout is operably coupled to the plural input channels, and is configured to receive a corresponding output signal from each input channel. Each corresponding output signal has a unique address identifying the corresponding input channel. The readout channel is configured to receive a corresponding readout output from the common readout. The readout output includes output signals from a corresponding group of input channels.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: February 13, 2018
    Assignee: General Electric Company
    Inventors: Arie Shahar, Avishai Ofan, Jeffrey Michael Levy, Moshe Cohen-Erner, Yaron Glazer
  • Publication number: 20170269240
    Abstract: A radiation detector assembly is provided that includes a semiconductor detector having a surface, plural pixelated anodes, and at least one processor. The pixelated anodes are disposed on the surface. Each pixelated anode is configured to generate a primary signal responsive to reception of a photon by the pixelated anode and to generate at least one secondary signal responsive to an induced charge caused by reception of a photon by at least one adjacent anode. The at least one processor is operably coupled to the pixelated anodes. The at least one processor configured to define sub-pixels for each pixelated anode; acquire signals corresponding to acquisition events from the pixelated anodes; determine sub-pixel locations for the acquisition events using the signals; and apply at least one calibration parameter on a per sub-pixel basis for the acquisition events based on the determined sub-pixel locations.
    Type: Application
    Filed: June 5, 2017
    Publication date: September 21, 2017
    Inventors: Arie Shahar, Mark David Fries, Yaron Glazer, Avishai Ofan
  • Patent number: 9696440
    Abstract: A radiation detector assembly is provided including a semiconductor detector, pixelated anodes, and at least one processor. The pixelated anodes are disposed on a surface of the semiconductor detector, and configured to generate a primary signal responsive to reception of a photon and a secondary signal responsive to an induced charge caused by reception of a photon by at least one adjacent anode. The at least one processor is operably coupled to the pixelated anodes, and configured to define sub-pixels for each pixelated anode; acquire primary signals and secondary signals from the pixelated anodes; determine sub-pixel locations for acquisition events using the primary and secondary signals; generate a sub-pixel energy spectrum for each sub-pixel; apply at least one energy calibration parameter to adjust the sub-pixel energy spectra for each pixelated anode; and, for each pixelated anode, combine the adjusted sub-pixel energy spectra to provide a pixelated anode spectrum.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: July 4, 2017
    Assignee: General Electric Company
    Inventors: Arie Shahar, Mark David Fries, Yaron Glazer, Jeffrey Michael Levy, Avishai Ofan, Rotem Har-Lavan
  • Patent number: 9632186
    Abstract: A radiation detector system is provided including a semiconductor detector, plural pixelated anodes, and at least one processor. The plural pixelated anodes are disposed on a surface of the detector. At least one of the pixelated anodes is configured to generate a collected charge signal corresponding to a charge collected by the pixelated anode and to generate a non-collected charge signal corresponding to a charge collected by an adjacent anode to the pixelated anode. The at least one processor is configured to determine a collected value for the collected charge signal in the pixelated anode; determine a non-collected value for the non-collected charge signal in the pixelated anode corresponding to the charge collected by the adjacent anode; use the non-collected value for the non-collected charge signal to determine a sub-pixel location for the adjacent anode; and use the collected value to count a single event in the pixelated anode.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: April 25, 2017
    Assignee: General Electric Company
    Inventors: Arie Shahar, Avishai Ofan, Jeffrey Michael Levy, Yaron Glazer
  • Publication number: 20170090047
    Abstract: A radiation detector processing assembly is provided including at least one application specific integrated circuit (ASIC). The radiation detector processing assembly includes plural input channels, a common readout, and a readout channel. Each input channel is configured to receive an input corresponding to a detection event from a pixel of a pixelated detector. The common readout is operably coupled to the plural input channels, and is configured to receive a corresponding output signal from each input channel. Each corresponding output signal has a unique address identifying the corresponding input channel. The readout channel is configured to receive a corresponding readout output from the common readout. The readout output includes output signals from a corresponding group of input channels.
    Type: Application
    Filed: September 30, 2015
    Publication date: March 30, 2017
    Inventors: Arie Shahar, Avishai Ofan, Jeffrey Michael Levy, Moshe Cohen-Erner, Yaron Glazer
  • Publication number: 20170016998
    Abstract: A radiation detector system is provided including a semiconductor detector, plural pixelated anodes, and at least one processor. The plural pixelated anodes are disposed on a surface of the detector. At least one of the pixelated anodes is configured to generate a collected charge signal corresponding to a charge collected by the pixelated anode and to generate a non-collected charge signal corresponding to a charge collected by an adjacent anode to the pixelated anode. The at least one processor is configured to determine a collected value for the collected charge signal in the pixelated anode; determine a non-collected value for the non-collected charge signal in the pixelated anode corresponding to the charge collected by the adjacent anode; use the non-collected value for the non-collected charge signal to determine a sub-pixel location for the adjacent anode; and use the collected value to count a single event in the pixelated anode.
    Type: Application
    Filed: September 29, 2016
    Publication date: January 19, 2017
    Inventors: Arie Shahar, Avishai Ofan, Jeffrey Michael Levy, Yaron Glazer
  • Patent number: 9482764
    Abstract: A radiation detector system is provided including a semiconductor detector, plural pixelated anodes, and at least one processor. At least one of the pixelated anodes is configured to generate a collected charge signal corresponding to charge collected by the pixelated anode and to generate a non-collected charge signal corresponding to charge collected by an adjacent anode. The at least one processor includes a tangible and non-transitory memory having stored thereon instructions configured to direct the at least one processor to determine a collected value for the collected charge signal, to determine a non-collected value for the non-collected charge signal, determine a calibrated value for the non-collected charge signal, determine a total charge produced by a charge sharing event using the collected value and the calibrated value, and count the charge sharing event as a single event if the total charge exceeds a predetermined value.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: November 1, 2016
    Assignee: General Electric Company
    Inventors: Arie Shahar, Avishai Ofan, Yaron Glazer, Jeffrey Michael Levy
  • Publication number: 20160245934
    Abstract: A radiation detector assembly is provided including a semiconductor detector, pixelated anodes, and at least one processor. The pixelated anodes are disposed on a surface of the semiconductor detector, and configured to generate a primary signal responsive to reception of a photon and a secondary signal responsive to an induced charge caused by reception of a photon by at least one adjacent anode. The at least one processor is operably coupled to the pixelated anodes, and configured to define sub-pixels for each pixelated anode; acquire primary signals and secondary signals from the pixelated anodes; determine sub-pixel locations for acquisition events using the primary and secondary signals; generate a sub-pixel energy spectrum for each sub-pixel; apply at least one energy calibration parameter to adjust the sub-pixel energy spectra for each pixelated anode; and, for each pixelated anode, combine the adjusted sub-pixel energy spectra to provide a pixelated anode spectrum.
    Type: Application
    Filed: February 20, 2015
    Publication date: August 25, 2016
    Inventors: Arie Shahar, Mark David Fries, Yaron Glazer, Jeffrey Michael Levy, Avishai Ofan, Rotem Har-Lavan
  • Patent number: 9349495
    Abstract: A collimator assembly is provided including a parallel-hole collimator and a pin-hole collimator. The parallel-hole collimator includes plural walls defining parallel holes therebetween, with the parallel holes arranged around a central opening. The pin-hole collimator includes a pin-hole formed in a body, with the pin-hole collimator disposed within the central opening.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: May 24, 2016
    Assignee: General Electric Company
    Inventors: Arie Shahar, Avishai Ofan
  • Publication number: 20160126402
    Abstract: A radiation detector is provided including a cathode, an anode, and a semiconductor wafer. The semiconductor wafer has opposed first and second surfaces. The cathode is mounted to the first surface, and the anode is mounted to the second surface. The semiconductor wafer is configured to be biased by a voltage between the cathode and the anode to generate an electrical field in the semiconductor wafer and to generate electrical signals responsive to absorbed radiation. The electrical field has an intensity having at least one local maximum disposed proximate to a corresponding at least one of the first surface or second surface.
    Type: Application
    Filed: October 29, 2014
    Publication date: May 5, 2016
    Inventors: Arie Shahar, Yaron Glazer, Jeffrey Levy, Avishai Ofan, Rotem Har-Lavan
  • Publication number: 20150327831
    Abstract: A medical imaging system is provided. Imaging detector columns are installed in a gantry to receive imaging information about a subject. Imaging detector columns can extend and retract radially as well as be rotated orbitally around the gantry. The system can automatically adjust setup configuration and an imaging operation based on subject shape estimation information.
    Type: Application
    Filed: May 15, 2014
    Publication date: November 19, 2015
    Applicant: General Electric Company
    Inventors: Ilan Levin, Yaron Hefetz, Avi Bar-Shalev, Avishai Ofan
  • Publication number: 20150302945
    Abstract: A collimator assembly is provided including a parallel-hole collimator and a pin-hole collimator. The parallel-hole collimator includes plural walls defining parallel holes therebetween, with the parallel holes arranged around a central opening. The pin-hole collimator includes a pin-hole formed in a body, with the pin-hole collimator disposed within the central opening.
    Type: Application
    Filed: April 22, 2014
    Publication date: October 22, 2015
    Applicant: General Electric Company
    Inventors: Arie Shahar, Avishai Ofan