Patents by Inventor Avraham Rasooly

Avraham Rasooly has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8614466
    Abstract: An apparatus and method are disclosed for electrically directly detecting biomolecular binding in a semiconductor. The semiconductor can be based on electrical percolation of nanomaterial formed in the gate region. In one embodiment of an apparatus, a semiconductor includes first and second electrodes with a gate region there between. The gate region includes a multilayered matrix of electrically conductive material with capture molecules for binding target molecules, such as antibody, receptors, DNA, RNA, peptides and aptamer. The molecular interactions between the capture molecules and the target molecules disrupts the matrix's continuity resulting in a change in electrical resistance, capacitance or impedance. The increase in resistance, capacitance or impedance can be directly measured electronically, without the need for optical sensors or labels.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: December 24, 2013
    Assignees: The United States of America, as Represented by the Secretary, Department of Health and Human Services, University of Maryland, Baltimore County, University of Maryland, College Park
    Inventors: Avraham Rasooly, Minghui Yang, Hugh A. Bruck, Yordan Kostov
  • Publication number: 20110217763
    Abstract: An apparatus and method are disclosed for electrically directly detecting biomolecular binding in a semiconductor. The semiconductor can be based on electrical percolation of nanomaterial formed in the gate region. In one embodiment of an apparatus, a semiconductor includes first and second electrodes with a gate region there between. The gate region includes a multilayered matrix of electrically conductive material with capture molecules for binding target molecules, such as antibody, receptors, DNA, RNA, peptides and aptamer. The molecular interactions between the capture molecules and the target molecules disrupts the matrix's continuity resulting in a change in electrical resistance, capacitance or impedance. The increase in resistance, capacitance or impedance can be directly measured electronically, without the need for optical sensors or labels.
    Type: Application
    Filed: November 18, 2009
    Publication date: September 8, 2011
    Inventors: Avraham Rasooly, Minghui Yang, Hugh A. Bruck, Yordan Kostov