Patents by Inventor Awaludin ZAENAL
Awaludin ZAENAL has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12234563Abstract: The present invention provides a simple method for producing an electrode having improved oxygen evolution reaction (OER) activity without a need for catalyst coating and an electrode produced by this production method. The method is a method for producing an electrode including a step of subjecting an electrically conductive substrate comprising a nickel alloy comprising 30 to 70% by mass of Ni and 30 to 70% by mass of Fe, provided that Ni+Fi=100% by mass, to a thermal treatment, and a step of etching the thermally treated electrically conductive substrate with an etchant comprising at least any acid of an organic acid and a weak inorganic acid. The electrode is an electrode that is produced by this production method and that is useful as an oxygen evolution anode or the like.Type: GrantFiled: July 1, 2022Date of Patent: February 25, 2025Assignee: DE NORA PERMELEC LTDInventors: Awaludin Zaenal, Akihiro Kato, Takaaki Nakai, Osamu Arimoto, Akihiro Madono, Sayaka Fukuda
-
Publication number: 20240263327Abstract: The present invention provides a simple method for producing an electrode having improved oxygen evolution reaction (OER) activity without a need for catalyst coating and an electrode produced by this production method. The method is a method for producing an electrode including a step of subjecting an electrically conductive substrate comprising a nickel alloy comprising 30 to 70% by mass of Ni and 30 to 70% by mass of Fe, provided that Ni+Fi=100% by mass, to a thermal treatment, and a step of etching the thermally treated electrically conductive substrate with an etchant comprising at least any acid of an organic acid and a weak inorganic acid. The electrode is an electrode that is produced by this production method and that is useful as an oxygen evolution anode or the like.Type: ApplicationFiled: July 1, 2022Publication date: August 8, 2024Inventors: Awaludin ZAENAL, Akihiro KATO, Takaaki NAKAI, Osamu ARIMOTO, Akihiro MADONO, Sayaka FUKUDA
-
Patent number: 11965256Abstract: The present invention provides an alkaline water electrolysis anode such that even when electric power having a large output fluctuation, such as renewable energy, is used as a power source, the electrolysis performance is unlikely to be deteriorated and excellent catalytic activity is retained stably over a long period of time. The alkaline water electrolysis anode is an alkaline water electrolysis anode 10 provided with an electrically conductive substrate 2 at least a surface of which contains nickel or a nickel base alloy and a catalyst layer 6 disposed on the surface of the electrically conductive substrate 2, the catalyst layer 6 containing a nickel-containing metal oxide having a spinel structure, wherein the nickel-containing metal oxide contains nickel (Ni) and manganese (Mn), and has an atom ratio of Li/Ni/Mn/O of (0.0 to 0.8)/(0.4 to 0.6)/(1.0 to 1.8)/4.0.Type: GrantFiled: October 14, 2021Date of Patent: April 23, 2024Assignees: KYOTO UNIVERSITY, NATIONAL UNIVERSITY CORPORATION YOKOHAMA NATIONAL UNIVERSITY, DE NORA PERMELEC LTDInventors: Yoshiharu Uchimoto, Tomoki Uchiyama, Shigenori Mitsushima, Yoshiyuki Kuroda, Kensaku Nagasawa, Yoshinori Nishiki, Awaludin Zaenal, Yun Bao
-
Patent number: 11866834Abstract: The present invention provides an electrode for electrolysis in which electrolysis performance is hard to deteriorate and excellent catalytic activity is kept stable over a long period of time even when electric power in which there is a large fluctuation in output, such as renewable energy, is used as a power source. The electrode for electrolysis is an electrode 10 for electrolysis provided with an electrically conductive substrate 2 at least the surface of which contains nickel or a nickel-based alloy, an intermediate layer 4 formed on the surface of the electrically conductive substrate 2 and containing a lithium-containing nickel oxide represented by composition formula LixNi2-xO2 (0.02?x?0.5), and a catalyst layer 6 of a nickel cobalt spinel oxide, an iridium oxide, or the like, the catalyst layer 6 formed on the surface of the intermediate layer 4.Type: GrantFiled: March 4, 2019Date of Patent: January 9, 2024Assignees: DE NORA PERMELEC LTD, KAWASAKI JUKOGYO KABUSHIKI KAISHAInventors: Shigenori Mitsushima, Yoshiyuki Kuroda, Ikuo Nagashima, Tatsuya Taniguchi, Yoshinori Nishiki, Akihiro Kato, Awaludin Zaenal, Fumiya Tsujii, Takaaki Nakai
-
Publication number: 20230408444Abstract: The present invention provides an accelerated evaluation method for an anode, the method imitating electric power having a large output fluctuation, such as renewable energy, and enabling an accurate evaluation, in a shorter time, of durability of an anode using such electric power having a large output fluctuation as a power source. The method is an accelerated evaluation method for an anode, the method performing evaluation of the durability of the anode in an accelerated manner by electrochemical operation in an aqueous electrolyte. The method includes a Je step of loading an oxidation current of 0.1 A/cm2 or more to the anode for a duration of Te and an Emin step of holding the anode at a constant potential lower than an open circuit potential for a duration of Train, wherein each of the Je step and the Emin step is repeated 100 times or more.Type: ApplicationFiled: November 17, 2021Publication date: December 21, 2023Inventors: Shigenori MITSUSHIMA, Yoshiyuki KURODA, Kensaku NAGASAWA, Ashraf ABDELHALEEM, Awaludin ZAENAL, Yoshinori NISHIKI
-
Publication number: 20230323547Abstract: The present invention provides an alkaline water electrolysis anode such that even when electric power having a large output fluctuation, such as renewable energy, is used as a power source, the electrolysis performance is unlikely to be deteriorated and excellent catalytic activity is retained stably over a long period of time. The alkaline water electrolysis anode is an alkaline water electrolysis anode 10 provided with an electrically conductive substrate 2 at least a surface of which contains nickel or a nickel base alloy and a catalyst layer 6 disposed on the surface of the electrically conductive substrate 2, the catalyst layer 6 containing a nickel-containing metal oxide having a spinel structure, wherein the nickel-containing metal oxide contains nickel (Ni) and manganese (Mn), and has an atom ratio of Li/Ni/Mn/O of (0.0 to 0.8)/(0.4 to 0.6)/(1.0 to 1.8)/4.0.Type: ApplicationFiled: October 14, 2021Publication date: October 12, 2023Inventors: Yoshiharu UCHIMOTO, Tomoki UCHIYAMA, Shigenori MITSUSHIMA, Yoshiyuki KURODA, Kensaku NAGASAWA, Yoshinori NISHIKI, Awaludin ZAENAL, Yun BAO
-
Patent number: 11692276Abstract: The present invention realizes industrially excellent effects such that when electric power having a large output fluctuation, such as renewable energy, is used as a power source, electrolysis performance is unlikely to be deteriorated and excellent catalytic activity is retained stably over a longer period of time, and in addition, the present invention provides a technique that enables forming a catalyst layer of an oxygen generation anode, which gives such excellent effects, with a more versatile materials and by a simple electrolysis method.Type: GrantFiled: March 8, 2021Date of Patent: July 4, 2023Assignees: DE NORA PERMELEC LTD, KAWASAKI JUKOGYO KABUSHIKI KAISHA, NATIONAL UNIVERSITY CORPORATION YOKOHAMA NATIONAL UNIVERSITYInventors: Shigenori Mitsushima, Yoshiyuki Kuroda, Shohei Takatsu, Ikuo Nagashima, Tatsuya Taniguchi, Akihiko Inomata, Ayaka Nagai, Yoshinori Nishiki, Akihiro Kato, Awaludin Zaenal, Takaaki Nakai
-
Publication number: 20230109702Abstract: The present invention realizes industrially excellent effects such that when electric power having a large output fluctuation, such as renewable energy, is used as a power source, electrolysis performance is unlikely to be deteriorated and excellent catalytic activity is retained stably over a longer period of time, and in addition, the present invention provides a technique that enables forming a catalyst layer of an oxygen generation anode, which gives such excellent effects, with a more versatile materials and by a simple electrolysis method.Type: ApplicationFiled: March 8, 2021Publication date: April 13, 2023Inventors: Shigenori MITSUSHIMA, Yoshiyuki KURODA, Shohei TAKATSU, Ikuo NAGASHIMA, Tatsuya TANIGUCHI, Akihiko INOMATA, Ayaka NAGAI, Yoshinori NISHIKI, Akihiro KATO, Awaludin ZAENAL, Takaaki NAKAI
-
Patent number: 11519082Abstract: An organic hydride production apparatus includes: an electrolyte membrane having proton conductivity; a cathode that includes a cathode catalyst layer used to hydrogenate a hydrogenation target substance using protons to produce an organic hydride and also includes a cathode chamber; an anode that includes an anode catalyst layer used to oxidize water to produce protons and also includes an anode chamber; and a gas introduction unit that introduces, into the anolyte at a certain position, a certain gas used to remove at least one of the hydrogenation target substance and the organic hydride that have passed through the electrolyte membrane and been mixed into the anolyte.Type: GrantFiled: May 15, 2019Date of Patent: December 6, 2022Assignees: NATIONAL UNIVERSITY CORPORATION YOKOHAMA NATIONAL UNIVERSITY, DE NORA PERMELEC LTD.Inventors: Shigenori Mitsushima, Kensaku Nagasawa, Yoshinori Nishiki, Akihiro Kato, Setsuro Ogata, Awaludin Zaenal, Akiyoshi Manabe, Koji Matsuoka, Yasushi Sato
-
Publication number: 20220333257Abstract: An organic hydride production apparatus includes: an electrolyte membrane having proton conductivity; a cathode, provided on one side of the electrolyte membrane, that contains a cathode catalyst used to hydrogenate a hydrogenation target substance using protons to produce an organic hydride; an anode, provided opposite to the one side of the electrolyte membrane, that contains an anode catalyst used to oxidize water to produce protons; and an anode support, provided opposite to the electrolyte membrane side of the anode, that supports the anode. The anode support is formed of an elastic porous body of which the Young's modulus is greater than 0.1 N/mm2 and less than 43 N/mm2.Type: ApplicationFiled: July 6, 2022Publication date: October 20, 2022Applicants: National University Corporation YOKOHAMA National University, DE NORA PERMELEC LTDInventors: Shigenori MITSUSHIMA, Kensaku NAGASAWA, Yoshinori NISHIKI, Setsuro OGATA, Akihiro KATO, Awaludin ZAENAL, Koji MATSUOKA, Yasushi SATO
-
Patent number: 10889903Abstract: An anode for oxygen evolution that operates at a small overpotential and in a stable manner, and can be used favorably in an organic chemical hydride electrolytic synthesis apparatus. An anode 10 for oxygen evolution that evolves oxygen in a sulfuric acid aqueous solution containing a substance to be hydrogenated dissolved at a concentration higher than 1 mg/L, wherein an anode substrate 10a is composed of a valve metal, and an anode catalyst layer 10b containing at least one oxide, nitride or carbide of iridium, and at least one oxide, nitride or carbide of at least one metal selected from the group consisting of elements belonging to groups 4, 5 and 13 of the periodic table is formed on the surface of the anode substrate 10a.Type: GrantFiled: November 9, 2015Date of Patent: January 12, 2021Assignees: NATIONAL UNIVERSITY CORPORATION YOKOHAMA NATIONAL UNIVERSITY, DE NORA PERMELEC LTD.Inventors: Shigenori Mitsushima, Yasutomo Takakuwa, Awaludin Zaenal, Akihiro Kato
-
Publication number: 20200407860Abstract: The present invention provides an electrode for electrolysis in which electrolysis performance is hard to deteriorate and excellent catalytic activity is kept stable over a long period of time even when electric power in which there is a large fluctuation in output, such as renewable energy, is used as a power source. The electrode for electrolysis is an electrode 10 for electrolysis provided with an electrically conductive substrate 2 at least the surface of which contains nickel or a nickel-based alloy, an intermediate layer 4 formed on the surface of the electrically conductive substrate 2 and containing a lithium-containing nickel oxide represented by composition formula LixNi2-xO2 (0.02?x?0.5), and a catalyst layer 6 of a nickel cobalt spinel oxide, an iridium oxide, or the like, the catalyst layer 6 formed on the surface of the intermediate layer 4.Type: ApplicationFiled: March 4, 2019Publication date: December 31, 2020Inventors: Shigenori MITSUSHIMA, Yoshiyuki KURODA, Ikuo NAGASHIMA, Tatsuya TANIGUCHI, Yoshinori NISHIKI, Akihiro KATO, Awaludin ZAENAL, Fumiya TSUJII, Takaaki NAKAI
-
Publication number: 20200080212Abstract: An organic hydride production apparatus includes: an electrolyte membrane having proton conductivity; a cathode, provided on one side of the electrolyte membrane, that contains a cathode catalyst used to hydrogenate a hydrogenation target substance using protons to produce an organic hydride; an anode, provided opposite to the one side of the electrolyte membrane, that contains an anode catalyst used to oxidize water to produce protons; and an anode support, provided opposite to the electrolyte membrane side of the anode, that supports the anode. The anode support is formed of an elastic porous body of which the Young's modulus is greater than 0.1 N/mm2 and less than 43 N/mm2.Type: ApplicationFiled: November 18, 2019Publication date: March 12, 2020Applicants: National University Corporation YOKOHAMA National University, DE NORA PERMELEC LTDInventors: Shigenori MITSUSHIMA, Kensaku NAGASAWA, Yoshinori NISHIKI, Setsuro OGATA, Akihiro KATO, Awaludin ZAENAL, Koji MATSUOKA, Yasushi SATO
-
Publication number: 20190352786Abstract: An organic hydride production apparatus includes: an electrolyte membrane having proton conductivity; a cathode that includes a cathode catalyst layer used to hydrogenate a hydrogenation target substance using protons to produce an organic hydride and also includes a cathode chamber; an anode that includes an anode catalyst layer used to oxidize water to produce protons and also includes an anode chamber; and a gas introduction unit that introduces, into the anolyte at a certain position, a certain gas used to remove at least one of the hydrogenation target substance and the organic hydride that have passed through the electrolyte membrane and been mixed into the anolyte.Type: ApplicationFiled: October 18, 2017Publication date: November 21, 2019Applicants: National University Corporation YOKOHAMA National University, DE NORA PERMELEC LTDInventors: Shigenori MITSUSHIMA, Kensaku NAGASAWA, Yoshinori NISHIKI, Akihiro KATO, Setsuro OGATA, Awaludin ZAENAL, Akiyoshi MANABE, Koji MATSUOKA, Yasushi SATO
-
Publication number: 20190264340Abstract: An organic hydride production apparatus includes: an electrolyte membrane having proton conductivity; a cathode that includes a cathode catalyst layer used to hydrogenate a hydrogenation target substance using protons to produce an organic hydride and also includes a cathode chamber; an anode that includes an anode catalyst layer used to oxidize water to produce protons and also includes an anode chamber; and a gas introduction unit that introduces, into the anolyte at a certain position, a certain gas used to remove at least one of the hydrogenation target substance and the organic hydride that have passed through the electrolyte membrane and been mixed into the anolyte.Type: ApplicationFiled: May 15, 2019Publication date: August 29, 2019Applicants: National University Corporation YOKOHAMA National University, DE NORA PERMELEC LTDInventors: Shigenori MITSUSHIMA, Kensaku NAGASAWA, Yoshinori NISHIKI, Akihiro KATO, Setsuro OGATA, Awaludin ZAENAL, Akiyoshi MANABE, Koji MATSUOKA, Yasushi SATO
-
Publication number: 20170321331Abstract: An anode for oxygen evolution that operates at a small overpotential and in a stable manner, and can be used favorably in an organic chemical hydride electrolytic synthesis apparatus. An anode 10 for oxygen evolution that evolves oxygen in a sulfuric acid aqueous solution containing a substance to be hydrogenated dissolved at a concentration higher than 1 mg/L, wherein an anode substrate 10a is composed of a valve metal, and an anode catalyst layer 10b containing at least one oxide, nitride or carbide of iridium, and at least one oxide, nitride or carbide of at least one metal selected from the group consisting of elements belonging to groups 4, 5 and 13 of the periodic table is formed on the surface of the anode substrate 10a.Type: ApplicationFiled: November 19, 2015Publication date: November 9, 2017Applicants: NATIONAL UNIVERSITY CORPORATION YOKOHAMA NATIONAL UNIVERSITY, DE NORA PERMELEC LTD.Inventors: Shigenori MITSUSHIMA, Yasutomo TAKAKUWA, Awaludin ZAENAL, Akihiro KATO