Patents by Inventor Axel Alexander Maria Smeyers

Axel Alexander Maria Smeyers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230220520
    Abstract: Described herein is a brazed heat exchanger comprising at least one header, manifold and/or tube structured to hold a coolant or refrigerant; said header, manifold, and/or tube component including a plurality of apertures; a plurality of substantially parallel fluid-carrying tubes each extending substantially perpendicular from one of said plurality of apertures in said header plate, manifold, and/or tube component and structured to receive said coolant or refrigerant therethrough; and a plurality of corrugated aluminium alloy fins being in thermal communication with said plurality of fluid-carrying tubes and structured to transfer heat away therefrom. The header, manifold, and/or tube component is made from an aluminium alloy sheet material comprising, in wt. %: Mn 1.4%-1.8%; Si up to 0.7%; Fe up to 0.7%; Mg up to 0.30%; Cu up to 0.10%; Cr up to 0.25%; Zr up to 0.25%; Zn up to 0.50%; Ti up to 0.2%; balance aluminium and inevitable impurities.
    Type: Application
    Filed: April 27, 2021
    Publication date: July 13, 2023
    Applicant: Novelis Koblenz GmbH
    Inventors: Fabian Ritz, Bernd Jacoby, Axel Alexander Maria Smeyers, Steven Kirkham
  • Publication number: 20230211440
    Abstract: Described herein is an aluminium alloy multi-layered brazing sheet product for brazing in an inert-gas atmosphere without a flux that includes a core layer made of a 3xxx alloy that includes <0.2 wt.% Mg, and that provides a covering clad layer that includes 2-6 wt.% Si on one or both sides of said 3xxx alloy core layer and a Al—Si brazing clad layer that includes 7-13 wt.% Si positioned between the 3xxx alloy core layer and the covering clad layer, wherein the covering clad layer has a thickness X1 and the Al—Si brazing clad layer has a thickness X2 and wherein X2 ? 2X1. Also described herein is the use of an aluminium alloy multi-layered brazing sheet product in a flux-free controlled atmosphere brazing (CAB) operation to produce a heat exchanger apparatus.
    Type: Application
    Filed: June 15, 2021
    Publication date: July 6, 2023
    Applicant: Novelis Koblenz GmbH
    Inventors: Bernd Jacoby, Steven Kirkham, Fabian Ritz, Axel Alexander Maria Smeyers
  • Publication number: 20230049185
    Abstract: Described herein is an aluminium alloy multi-layered brazing sheet product for brazing in an inert-gas atmosphere without a flux, comprising a core layer made of a 3xxx alloy comprising 0.20-0.75 wt. % Mg, and provided with a covering clad layer comprising 2-5 wt. % Si on one or both sides of said 3xxx alloy core layer and a Al—Si brazing clad layer comprising 7-13 wt. % Si positioned between the 3xxx alloy core layer and the covering clad layer, wherein the covering clad layer has a thickness X1 and the Al—Si brazing clad layer has a thickness X2 and wherein X2?2X1. The invention further relates to the use of an aluminium alloy multi-layered brazing sheet product in a fluxfree controlled atmosphere brazing (CAB) operation to produce a heat exchanger apparatus.
    Type: Application
    Filed: January 26, 2021
    Publication date: February 16, 2023
    Applicant: Aleris Rolled Products Germany GmbH
    Inventors: Bernd Jacoby, Fabian Ritz, Arne Schlegel, Steven Kirkham, Axel Alexander Maria Smeyers
  • Patent number: 10343726
    Abstract: A method of manufacturing a formed aluminum alloy automotive structural part or a body-in-white (BIW) part of a motor vehicle, including the steps of: providing a rolled aluminum alloy bare or composite sheet product having a gauge of about 0.5 mm to 4 mm, wherein the sheet product includes at least one layer an AA7xxx-series aluminum alloy, the sheet product having been subjected to solution heat treatment and quenching followed by at least 1 day of natural ageing; subjecting the naturally aged sheet product to reversion annealing treatment, namely a heat treatment at a temperature between 100° C. and 350° C. during 0.1 to 60 seconds; optionally subjecting the heated sheet product to forced cooling operation; within 2 hours, preferably within 30 minutes, from the reversion annealing treatment, forming the sheet product to obtain a three-dimensionally formed automotive structural part or body-in-white (BIW) part.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: July 9, 2019
    Assignee: ALERIS ALUMINUM DUFFEL BVBA
    Inventors: Axel Alexander Maria Smeyers, Sunil Khosla
  • Patent number: 9493867
    Abstract: A method of manufacturing a formed aluminum alloy structural part or a body-in-white (BIW) part of a motor vehicle. The method includes: providing a rolled aluminum sheet product wherein the aluminum alloy is an AA7000-series aluminum alloy and has a gauge in a range of 0.5-4 mm and is subjected to a solution heat treatment and has been cooled, forming the aluminum alloy sheet to obtain a three-dimensional formed part, heating the three-dimensional formed part to at least one pre-ageing temperature between 50-250° C., and subjecting the formed and pre-aged motor vehicle component to a paint bake cycle.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: November 15, 2016
    Assignee: ALERIS ALUMINUM DUFFEL BVBA
    Inventors: Axel Alexander Maria Smeyers, Sunil Khosla
  • Patent number: 9352377
    Abstract: A method for producing a joint in at least two overlapping metal work pieces using a joining tool to obtain a mechanical joint between the overlapping work pieces, in particular joining by mechanical folding or pressure joining At least one of the first work piece and second work piece is a sheet material made of an aluminum alloy of the AA7000-series. A heat-treatment is applied to at least the work piece of 7000-series sheet material within 120 minutes prior to the production of the joint and/or for at least part of the time during production of the joint to temporarily reduce the tensile strength in the joining area of at least the work piece of said 7000-series sheet material.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: May 31, 2016
    Assignee: ALERIS ALUMINUM DUFFEL BVBA
    Inventors: Axel Alexander Maria Smeyers, Sunil Khosla
  • Patent number: 9254879
    Abstract: An aluminum alloy rolled sheet product for forming into automotive body panels, and having a yield strength of more than 160 MPa after being subjected to a paint-bake cycle, and having a gauge in a range of 0.5 to 4 mm, and preferably 0.7 to 3.5 mm, and having a composition of, in wt. %: Zn 1.5 to 4.0, Mg 0.3 to 1.5, Cu 0 to 1.0, Ti 0 to 0.15, Fe 0 to 0.35, Si 0 to 0.5, other elements and unavoidable impurities, and balance aluminum. An automotive body part formed from such an aluminum sheet. A method of manufacturing an automotive body part. Also, the use of the aluminum alloy sheet product in such a method of manufacturing.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: February 9, 2016
    Assignee: ALERIS ALUMINUM DUFFEL BVBA
    Inventors: Axel Alexander Maria Smeyers, Sunil Khosla, Bruno Schepers, Alastair Wise
  • Publication number: 20150217813
    Abstract: A method of manufacturing a formed aluminium alloy automotive structural part or a body-in-white (BIW) part of a motor vehicle, including the steps of: providing a rolled aluminium alloy bare or composite sheet product having a gauge of about 0.5 mm to 4 mm, wherein the sheet product includes at least one layer an AA7xxx-series aluminium alloy, the sheet product having been subjected to solution heat treatment and quenching followed by at least 1 day of natural ageing; subjecting the naturally aged sheet product to reversion annealing treatment, namely a heat treatment at a temperature between 100° C. and 350° C. during 0.1 to 60 seconds; optionally subjecting the heated sheet product to forced cooling operation; within 2 hours, preferably within 30 minutes, from the reversion annealing treatment, forming the sheet product to obtain a three-dimensionally formed automotive structural part or body-in-white (BIW) part.
    Type: Application
    Filed: September 9, 2013
    Publication date: August 6, 2015
    Inventors: Axel Alexander Maria Smeyers, Sunil Khosla
  • Publication number: 20140290064
    Abstract: A method for producing a joint in at least two overlapping metal work pieces using a joining tool to obtain a mechanical joint between the overlapping work pieces, in particular joining by mechanical folding or pressure joining At least one of the first work piece and second work piece is a sheet material made of an aluminum alloy of the AA7000-series. A heat-treatment is applied to at least the work piece of 7000-series sheet material within 120 minutes prior to the production of the joint and/or for at least part of the time during production of the joint to temporarily reduce the tensile strength in the joining area of at least the work piece of said 7000-series sheet material.
    Type: Application
    Filed: September 10, 2012
    Publication date: October 2, 2014
    Applicant: ALERIS ALUMINUM DUFFEL BVBA
    Inventors: Axel Alexander Maria Smeyers, Sunil Khosla
  • Publication number: 20140069557
    Abstract: A method of manufacturing a formed aluminium alloy body-in-white (“BIW”) part of a motor vehicle, the BIW part having a yield strength of more than 500 MPa after being subjected to a paint-bake cycle. The method includes providing a rolled aluminium sheet product of an AlZnMgCu alloy and having a gauge in a range of 0.5 to 4 mm and subjected to a solution heat treatment (SHT) and quenched following SHT, and wherein the SHT and quenched aluminium sheet product has a substantially recrystallized microstructure, forming the aluminium alloy sheet to obtain a formed BIW part, assembling the formed BIW part with one or more other metal parts to form an assembly forming a motor vehicle component, subjecting the motor vehicle component to a paint bake cycle, wherein the aluminium alloy sheet in the formed BIW part has a yield strength of more than 500 MPa.
    Type: Application
    Filed: November 14, 2013
    Publication date: March 13, 2014
    Applicants: Aleris Aluminum Koblenz GmbH, Aleris Aluminum Duffel BVBA
    Inventors: Axel Alexander Maria SMEYERS, SR., Bruno SCHEPERS, SR., Sabine Maria SPANGEL, Alastair WISE, Ingo Günther Kröpfl, Sunil KHOSLA
  • Patent number: 8613820
    Abstract: A method of manufacturing a formed aluminum alloy body-in-white (“BIW”) part of a motor vehicle, the BIW part having a yield strength of more than 500 MPa after being subjected to a paint-bake cycle. The method includes (a) providing a rolled aluminum sheet product of an AlZnMgCu alloy and having a gauge in a range of 0.5 to 4 mm and subjected to a solution heat treatment (SHT) and quenched following SHT, and wherein the SHT and quenched aluminum sheet product has a substantially recrystallized microstructure, (b) forming the aluminum alloy sheet to obtain a formed BIW part, (c) assembling the formed BIW part with one or more other metal parts to form an assembly forming a motor vehicle component, (d) subjecting the motor vehicle component to a paint bake cycle, wherein the aluminum alloy sheet in the formed BIW part has a yield strength of more than 500 MPa.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: December 24, 2013
    Assignees: Aleris Aluminum Duffel BVBA, Aleris Aluminum Koblenz GmbH
    Inventors: Axel Alexander Maria Smeyers, Bruno Schepers, Sabine Maria Spangel, Alastair Wise, Ingo Günther Kröpfl, Sunil Khosla
  • Publication number: 20130228252
    Abstract: An aluminium alloy rolled sheet product for forming into automotive body panels, and having a yield strength of more than 160 MPa after being subjected to a paint-bake cycle, and having a gauge in a range of 0.5 to 4 mm, and preferably 0.7 to 3.5 mm, and having a composition of, in wt.%: Zn 1.5 to 4.0, Mg 0.3 to 1.5, Cu 0 to 1.0, Ti 0 to 0.15, Fe 0 to 0.35, Si 0 to 0.5, other elements and unavoidable impurities, and balance aluminium. An automotive body part formed from such an aluminium sheet. A method of manufacturing an automotive body part. Also, the use of the aluminium alloy sheet product in such a method of manufacturing.
    Type: Application
    Filed: October 28, 2011
    Publication date: September 5, 2013
    Applicant: ALERIS ALUMINUM DUFFEL BVBA
    Inventors: Axel Alexander Maria Smeyers, Sunil Khosla, Bruno Schepers, Alastair Wise
  • Publication number: 20130216790
    Abstract: A method of manufacturing a formed aluminium alloy structural part or a body-in-white (BIW) part of a motor vehicle. The method includes: providing a rolled aluminium sheet product wherein the aluminium alloy is an AA7000-series aluminium alloy and has a gauge in a range of 0.5-4 mm and is subjected to a solution heat treatment and has been cooled, forming the aluminium alloy sheet to obtain a three-dimensional formed part, heating the three-dimensional formed part to at least one pre-ageing temperature between 50-250° C., and subjecting the formed and pre-aged motor vehicle component to a paint bake cycle.
    Type: Application
    Filed: November 2, 2011
    Publication date: August 22, 2013
    Applicant: ALERIS ALUMINUM DUFFEL BVBA
    Inventors: Axel Alexander Maria Smeyers, Sunil Khosla
  • Publication number: 20120090742
    Abstract: A method of manufacturing a formed aluminium alloy body-in-white (“BIW”) part of a motor vehicle, the BIW part having a yield strength of more than 500 MPa after being subjected to a paint-bake cycle. The method includes (a) providing a rolled aluminium sheet product of an AlZnMgCu alloy and having a gauge in a range of 0.5 to 4 mm and subjected to a solution heat treatment (SHT) and quenched following SHT, and wherein the SHT and quenched aluminium sheet product has a substantially recrystallized microstructure, (b) forming the aluminium alloy sheet to obtain a formed BIW part, (c) assembling the formed BIW part with one or more other metal parts to form an assembly forming a motor vehicle component, (d) subjecting the motor vehicle component to a paint bake cycle, wherein the aluminium alloy sheet in the formed BIW part has a yield strength of more than 500 MPa.
    Type: Application
    Filed: June 1, 2010
    Publication date: April 19, 2012
    Applicant: Aleris Aluminum Koblenz GmbH
    Inventors: Axel Alexander Maria Smeyers, Bruno Schepers, Sabine Maria Spangel, Alastair Wise, Ingo Günther Kröpel, Sunil Khosla