Patents by Inventor Axel Franke

Axel Franke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120060604
    Abstract: A yaw-rate sensor having a substrate and a plurality of movable substructures that are mounted over a surface of the substrate, the movable substructures being coupled to a shared, in particular, central spring element, means being provided for exciting the movable substructures into a coupled oscillation in a plane that extends parallel to the surface of the substrate, the movable substructures having Coriolis elements, means being provided for detecting deflections of the Coriolis elements induced by a Coriolis force, a first Coriolis element being provided for detecting a yaw rate about a first axis, a second Coriolis element being provided for detecting a yaw rate about a second axis, the second axis being oriented perpendicularly to the first axis.
    Type: Application
    Filed: October 2, 2008
    Publication date: March 15, 2012
    Inventors: Reinhard Neul, Johannes Classen, Torsten Ohms, Burkhard Kuhlmann, Axel Franke, Oliver Kohn, Daniel Christoph Meisel, Joerg Hauer, Udo-Martin Gomez, Kersten Kehr
  • Publication number: 20120061860
    Abstract: A method for constructing an electrical circuit that includes at least one semiconductor chip encapsulated with a potting compound is disclosed. The method includes applying a galvanic layer arrangement for forming an electrochemical element on an element of the electrical circuit including the at least one semiconductor chip.
    Type: Application
    Filed: September 14, 2011
    Publication date: March 15, 2012
    Applicant: Robert Bosch GmbH
    Inventors: Tjalf Pirk, Juergen Butz, Axel Franke, Frieder Haag, Heribert Weber, Arnim Hoechst, Sonja Knies
  • Publication number: 20120036915
    Abstract: A sensor system having a substrate and a mass which is movably suspended relative to the substrate is described, the sensor system including detection arrangement for detecting a deflection of the seismic mass relative to the substrate along a deflection direction, the detection arrangement including a first measuring electrode affixed to the substrate and a second measuring electrode affixed to the substrate, and a first overlap, which is perpendicular to the deflection direction, between the first measuring electrode and the seismic mass along the deflection direction is greater than a second overlap, which is perpendicular to the deflection direction, between the second measuring electrode and the seismic mass.
    Type: Application
    Filed: August 3, 2011
    Publication date: February 16, 2012
    Inventors: Axel FRANKE, Mirko Hattass, Alexander Buhmann, Marian Keck
  • Publication number: 20120038065
    Abstract: A method for producing an electrical circuit having at least one semiconductor chip is disclosed. The method includes forming a wiring layer at a contact side of the at least one semiconductor chip, which is encapsulated with a potting compound apart from the contact side. The wiring layer has at least one conductor loop for the purpose of forming an electrical coil.
    Type: Application
    Filed: August 9, 2011
    Publication date: February 16, 2012
    Applicant: Robert Bosch GmbH
    Inventors: Juergen Butz, Axel Franke, Frieder Haag, Heribert Weber, Arnim Hoechst, Sonja Knies
  • Patent number: 8114258
    Abstract: An electrolysis device producing alkali metals from a liquid alkali metal heavy metal alloy, including at least two connected tubes forming an electrolysis unit. Two solid electrolyte tubes are arranged concentrically in each tube and oriented with openings towards one end of each tube such that a first annular gap for guiding a liquid alkali metal forming an anode is located between the inside of the tube and the outside of the solid electrolyte tubes. An alloy inlet and outlet for the liquid alkali metal in each of the tubes leads into the first annular gap of a tube. An inner chamber sealed off from the alloy inlet, first annular gap, and alloy outlet in each solid electrolyte tube receives liquid alkali metal that can be used as a cathode connected to the alkali metal outlet. Two respective closure devices are arranged at the two ends of each tube.
    Type: Grant
    Filed: September 13, 2005
    Date of Patent: February 14, 2012
    Assignee: BASF Aktiengesellschaft
    Inventors: Guenther Huber, Michael Lutz, Michael Wille, Holger Friedrich, Josef Guth, Uwe Behling, Axel Franke, Elisabeth Gunkel
  • Publication number: 20120025277
    Abstract: A measuring element for recording a deflection includes a region which is situated on a semi-conductor substrate and an electrode for influencing a conductivity of the region, the electrode being mounted deflectably in relation to the region, in such a way that an overlap region is formed between the electrode and the region, the overlap region having a dimension that is variable with a deflection of the electrode. A change in the output signal of the measuring element is a function of the conductivity of the region and is controllable by a change in the dimension of the overlap region, the change in the dimension of the overlap region having a non-linear relationship with the deflection of the electrode so that a change in the output signal of the measuring element has a non-linear relationship with the deflection of the electrode.
    Type: Application
    Filed: March 1, 2010
    Publication date: February 2, 2012
    Inventor: Axel Franke
  • Publication number: 20110296917
    Abstract: A micromechanical component is described including a substrate having a spacer layer and a test structure for ascertaining the thickness of the spacer layer. The test structure includes a seismic mass, which is elastically deflectable along a measuring axis parallel to the substrate, a first electrode system and a second electrode system for deflecting the seismic mass along the measuring axis, having a mass electrode, which is produced by a part of the seismic mass, and a substrate electrode, which is situated on the substrate in each case, the first electrode system being designed to be thicker than the second electrode system by the layer thickness of the spacer layer.
    Type: Application
    Filed: May 26, 2011
    Publication date: December 8, 2011
    Inventors: Jochen Reinmuth, Ralf Boessendoerfer, Axel Franke, Mirko Hattass
  • Publication number: 20110192229
    Abstract: A micro electrical-mechanical system (MEMS) is disclosed. The MEMS includes a substrate, a first pivot extending upwardly from the substrate, a first lever arm with a first longitudinal axis extending above the substrate and pivotably mounted to the first pivot for pivoting about a first pivot axis, a first capacitor layer formed on the substrate at a location beneath a first capacitor portion of the first lever arm, a second capacitor layer formed on the substrate at a location beneath a second capacitor portion of the first lever arm, wherein the first pivot supports the first lever arm at a location between the first capacitor portion and the second capacitor portion along the first longitudinal axis, and a first conductor member extending across the first longitudinal axis and spaced apart from the first pivot axis.
    Type: Application
    Filed: February 10, 2010
    Publication date: August 11, 2011
    Applicant: ROBERT BOSCH GMBH
    Inventors: Po-Jui Chen, Martin Eckardt, Axel Franke
  • Publication number: 20110174076
    Abstract: A micromechanical acceleration sensor includes a substrate, an elastic diaphragm which extends parallel to the substrate plane and which is partially connected to the substrate, and which has a surface region which may be deflected perpendicular to the substrate plane, and a seismic mass whose center of gravity is situated outside the plane of the elastic diaphragm. The seismic mass extends at a distance over substrate regions which are situated outside the region of the elastic diaphragm and which include a system composed of multiple electrodes, each of which together with oppositely situated regions of the seismic mass forms a capacitor in a circuit. In its central region the seismic mass is attached to the elastic diaphragm in the surface region of the elastic diaphragm which may be deflected perpendicular to the substrate plane.
    Type: Application
    Filed: November 14, 2007
    Publication date: July 21, 2011
    Inventors: Johannes Classen, Axel Franke, Dietrich Schubert, Kersten Kehr, Ralf Reichenbach
  • Publication number: 20110140692
    Abstract: A method for determining the sensitivity of a sensor provides the following steps: a) first and second deflection voltages are applied to first and second electrode systems of the sensor, respectively, and first and second electrostatic forces are exerted on an elastically suspended seismic mass of the sensor by the first and second electrode systems, respectively, and a restoring force is exerted on the mass as a result of the elasticity of the mass, and a force equilibrium is established among the first and second electrostatic forces and the restoring force, and the mass assumes a deflection position characteristic of the force equilibrium, and an output signal characteristic of the force equilibrium and of the deflection position is measured; and b) the sensitivity of the sensor is computed on the basis of the first and second deflection voltages.
    Type: Application
    Filed: November 9, 2010
    Publication date: June 16, 2011
    Inventors: Johannes Classen, Arnd Kaelberer, Hans-Joerg Faisst, Axel Franke, Mirko Hattass, Holger Rank, Robert Sattler, Alexander Buhmann, Ramona Maas, Marian Keck
  • Publication number: 20110120208
    Abstract: A method for adjusting an acceleration sensor which includes a substrate and a seismic mass, the acceleration sensor having first and further first electrodes attached to the substrate on a first side, counter-electrodes of the seismic mass being situated between the first and further first electrodes, the acceleration sensor having further second electrodes on a second side and further fourth electrodes on a fourth side opposite the second side, an essentially equal first excitation voltage being applied to the first and further first electrodes in a first step for exciting a first deflection of the seismic mass along a first direction, the first deflection being compensated in a second step by applying a first compensation voltage to the further second and further fourth electrodes.
    Type: Application
    Filed: November 12, 2010
    Publication date: May 26, 2011
    Inventors: Torsten Ohms, Axel Franke
  • Publication number: 20110109327
    Abstract: A sensor for capacitive detection of a mechanical deflection includes a substrate having a first substrate electrode and a second substrate electrode; and a mass movable relative to the substrate. The mass is divided into: a first electrically separate region having a first ground electrode; and a second electrically separate region of the mass having a second ground electrode. At least one portion of the first ground electrode is situated in a first region between the first substrate electrode and the second substrate electrode, and forms a first differential capacitor. At least one portion of the second ground electrode is situated in a second region between the first substrate electrode and the second substrate electrode, and forms a second differential capacitor.
    Type: Application
    Filed: October 12, 2010
    Publication date: May 12, 2011
    Inventors: Axel Franke, Alexander Buhmann, Marian Keck
  • Publication number: 20110088469
    Abstract: A method and system are provided including a rotation-rate sensor having a substrate, a bearing, a vibrating structure suspended on the bearing by springs in a rotatable manner for performing a planar driving vibration motion, and drive means for producing the planar driving vibration motion of the vibrating structure. The rotation-rate sensor has first evaluation means for detecting a rotation in a first axis of rotation and second evaluation means for detecting a rotation in a second axis of rotation.
    Type: Application
    Filed: November 8, 2007
    Publication date: April 21, 2011
    Inventors: Reinhard Neul, Johannes Classen, Sebastian Gracki, Burkhard Kuhlmann, Axel Franke, Oliver Kohn, Kersten Kehr, Christian Gerhardt
  • Publication number: 20110060543
    Abstract: A method for self-adjustment of a triaxial acceleration sensor during operation includes: calibrating the sensor; checking the self-adjustment for an interfering acceleration, with the aid of a measurement equation and estimated values for sensitivity and offset; repeating the adjustment if an interfering acceleration is recognized; and accepting the estimated values for sensitivity and offset as calibration values if an interfering acceleration is not recognized. The step of checking the self-adjustment includes: estimating sensitivity and/or offset and the variance thereof; determining an innovation as the difference between a measured value of the measurement equation and an estimated value of the measurement equation; testing the innovation for a normal distribution; and recognizing the interfering acceleration in the event of a deviation from the normal distribution.
    Type: Application
    Filed: August 9, 2010
    Publication date: March 10, 2011
    Inventors: Axel Franke, Alexander Buhmann
  • Publication number: 20110048132
    Abstract: A microsystem, e.g., a micromechanical sensor, has a first cavity which is sealed off from the surroundings and a second cavity which is sealed off from the surroundings. The first cavity is bounded by a first bond joint and the second cavity is bounded by a second bond joint. Either the first bond joint or the second bond joint is a eutectic bond joint or a diffusion-soldered joint.
    Type: Application
    Filed: August 6, 2010
    Publication date: March 3, 2011
    Inventors: Christian Rettig, Axel Franke, Ando Feyh
  • Publication number: 20110050251
    Abstract: A capacitive sensor and a capacitive actuator having at least one seismic mass deflectably mounted on a substrate. A comb electrode having comb fingers is mounted on the seismic mass, and a comb electrode having comb fingers is mounted on the substrate in such a way that the comb fingers are situated parallel to a deflection direction of the seismic mass and interlock in a comb-like manner. The characteristic curve of the sensor or actuator is adjusted by optimizing the geometry of at least one comb electrode, in particular of at least one comb finger.
    Type: Application
    Filed: July 29, 2010
    Publication date: March 3, 2011
    Inventors: Axel FRANKE, Alexander Buhmann, Marian Keck
  • Patent number: 7861586
    Abstract: A method for measuring an air mass flow flowing in a main flow direction, and a hot-film air mass meter by which the method is able to be realized. The method and the hot-film air mass meter are especially suitable for use in the induction tract of an internal combustion engine. The hot-film air mass meter includes a sensor chip having a chip surface across which an air mass flow is able to flow. The chip surface in turn has a measuring surface, the measuring surface including a central hot-film air mass meter circuit having at least one central heating element and at least two temperature sensors. The method is implemented so that the at least one central heating element is periodically heated using a frequency ?. With the aid of at least two temperature sensors, at least two measuring signals are detected. The measuring signals and/or at least one differential signal of the at least two measuring signals are modulated using the frequency ?.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: January 4, 2011
    Assignee: Robert Bosch GmbH
    Inventors: Bernard Opitz, Ulrich Wagner, Axel Franke, Carsten Raudzis
  • Publication number: 20100232119
    Abstract: A method for producing an electronic module, in that at least one first microelectronic component is provided and is electrically connected to a second microelectronic component by a first flip-chip method step; at least one dielectric component is provided which has at least one printed circuit trace, and at least one printed circuit trace of the dielectric component is electrically connected to the second microelectronic component; and the second microelectronic component is electrically connected by a second flip-chip method step to a printed circuit board by way of the printed circuit trace(s) of the dielectric component, in order to avoid vias through a microelectronic component; the invention also relates to a corresponding electronic module.
    Type: Application
    Filed: February 19, 2010
    Publication date: September 16, 2010
    Inventors: Manuela Schmidt, Axel Franke, Sven Zinober
  • Publication number: 20100225255
    Abstract: A drive element is provided having a substrate, a seismic mass, a drive electrode and a counter-electrode, one of the two electrodes being connected to the substrate and the other of the two electrodes being connected to the seismic mass; and the drive electrode and the counter-electrodes being provided for the excitation of motion of the seismic mass in a main direction of motion; and in addition, the drive electrode includes a first and a second partial electrode, which are switchable separately from each other.
    Type: Application
    Filed: December 22, 2009
    Publication date: September 9, 2010
    Inventor: Axel Franke
  • Publication number: 20100206076
    Abstract: A sensor element is provided for sensing accelerations in three spatial directions, which furnishes reliable measurement results and moreover can be implemented economically and with a small configuration. The sensor element encompasses at least one seismic mass deflectable in three spatial directions, a diaphragm structure that functions as a suspension mount for the seismic mass, and at least one stationary counterelectrode for capacitive sensing of the deflections of the diaphragm structure. According to the exemplary embodiments and/or exemplary methods of the present invention, the diaphragm structure encompasses at least four electrode regions, electrically separated from one another, that are mechanically coupled via the seismic mass.
    Type: Application
    Filed: September 19, 2008
    Publication date: August 19, 2010
    Inventors: Jochen Zoellin, Axel Franke, Kathrin Teeffelen, Christina Leinenbach