Patents by Inventor Axel Loewe

Axel Loewe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10888237
    Abstract: A computer system for determining Ventricular Far Field contribution in atrial electrograms of a patient. The system includes an interface module configured to receive a plurality of electrical signals generated by a plurality of sensors wherein the plurality of electrical signals relate to a plurality of locations in an atrium of the patient; a reference module configured to determine a reference signal reflecting electrical excitation of the patient's ventricles; and a data processing module. The data processing module is configured to select from the plurality of the received electrical signals such electrical signals which are recorded a number of conditions. The data processing module is further configured to determine a spatio-temporal distribution of the Ventricular Far Field inside the atrium by approximating the spatio-temporal distribution (VFFc) based on signal data of the selected signals by using an approximation model.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: January 12, 2021
    Assignee: Karlsruhe Institute of Technology
    Inventors: Tobias Oesterlein, Olaf Dössel, Daniel Frisch, Axel Loewe, Gustavo Lenis, Nicolas Pilia
  • Publication number: 20190059765
    Abstract: A computer system for determining Ventricular Far Field contribution in atrial electrograms of a patient. The system includes an interface module configured to receive a plurality of electrical signals generated by a plurality of sensors wherein the plurality of electrical signals relate to a plurality of locations in an atrium of the patient; a reference module configured to determine a reference signal reflecting electrical excitation of the patient's ventricles; and a data processing module. The data processing module is configured to select from the plurality of the received electrical signals such electrical signals which are recorded a number of conditions. The data processing module is further configured to determine a spatio-temporal distribution of the Ventricular Far Field inside the atrium by approximating the spatio-temporal distribution (VFFc) based on signal data of the selected signals by using an approximation model.
    Type: Application
    Filed: August 23, 2018
    Publication date: February 28, 2019
    Inventors: Tobias Oesterlein, Olaf Dössel, Daniel Frisch, Axel Loewe, Gustavo Lenis, Nicolas Pilia
  • Patent number: 9097780
    Abstract: A computer-implemented method for reconstruction of a magnetic resonance image includes acquiring a first incomplete k-space data set comprising a plurality of first k-space lines spaced according to an acceleration factor and one or more calibration lines. A parallel imaging reconstruction technique is applied to the first incomplete k-space data to determine a plurality of second k-space lines not included in the first incomplete k-space data set, thereby yielding a second incomplete k-space data set. Then, the parallel imaging reconstruction technique is applied to the second incomplete k-space data to determine a plurality of third k-space lines not included in the second incomplete k-space data, thereby yielding a complete k-space data set.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: August 4, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jun Liu, Zhili Yang, Mariappan S. Nadar, Nirmal Janardhanan, Michael Zenge, Edgar Mueller, Qiu Wang, Axel Loewe
  • Publication number: 20140133724
    Abstract: A computer-implemented method for reconstruction of a magnetic resonance image includes acquiring a first incomplete k-space data set comprising a plurality of first k-space lines spaced according to an acceleration factor and one or more calibration lines. A parallel imaging reconstruction technique is applied to the first incomplete k-space data to determine a plurality of second k-space lines not included in the first incomplete k-space data set, thereby yielding a second incomplete k-space data set. Then, the parallel imaging reconstruction technique is applied to the second incomplete k-space data to determine a plurality of third k-space lines not included in the second incomplete k-space data, thereby yielding a complete k-space data set.
    Type: Application
    Filed: October 15, 2013
    Publication date: May 15, 2014
    Applicants: Siemens Aktiengesellschaft, Siemens Corporation
    Inventors: Jun Liu, Zhili Yang, Mariappan S. Nadar, Nirmal Janardhanan, Michael Zenge, Edgar Mueller, Qiu Wang, Axel Loewe
  • Publication number: 20140037228
    Abstract: A computer-implemented method for calculating a multi-dimensional wavelet transform in an image processing system comprising a plurality of computation units includes receiving multi-dimensional image data. An overlap value corresponding to a number of non-zero filter coefficients associated with the multi-dimensional wavelet transform is identified. Then the multi-dimensional image data is divided into a plurality of multi-dimensional arrays, wherein the multi-dimensional arrays overlap in each dimension by a number of pixels equal to the overlap value. A multi-dimensional wavelet transform is calculated for each multi-dimensional array, in parallel, across the plurality of computation units.
    Type: Application
    Filed: July 25, 2013
    Publication date: February 6, 2014
    Applicant: SIEMENS CORPORATION
    Inventors: Alban Lefebvre, Axel Loewe, Mariappan S. Nadar, Jun Liu