Patents by Inventor Axel O. zur Loye
Axel O. zur Loye has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12168962Abstract: A method for controlling a dual fuel engine system includes estimating a total indicated engine load, where the total indicated engine load is based on a sum of a measured engine power and a power loss estimate. The method further includes determining a total fueling amount based on an engine speed and the total indicated engine load, where the total fueling amount includes a gas fueling amount and a diesel fueling amount. The method also includes controlling the dual fuel engine system using the total fueling amount.Type: GrantFiled: September 14, 2022Date of Patent: December 17, 2024Assignee: Cummins Power Generation Inc.Inventors: Travis Alva Anderson, Axel O. zur Loye, Mark A. Rosswurm, Paul Daniel Borisuk, Shashank Bishnoi, Matthew W. Isaacs, Jason A. Gore, Atin Tandon, Jamie Robert John Sleigh
-
Publication number: 20240392731Abstract: A method for controlling a dual fuel engine system includes determining a friction power loss amount of an internal combustion engine of the dual fuel engine system, where the friction power loss amount is based on an engine speed of the internal combustion engine and a friction torque estimate. The method also includes determining an accessory power loss amount of a power of the internal combustion engine, where the accessory power loss amount is based on the engine speed and an accessory torque estimate. The method further includes estimating a net engine power amount based on the accessory power loss amount and a brake power amount of the internal combustion engine, estimating an indicated diesel power, and estimating, based on the estimated net engine power, a first indicated engine power and a first gas power.Type: ApplicationFiled: August 5, 2024Publication date: November 28, 2024Applicant: Cummins Power Generation Inc.Inventors: Travis Alva Anderson, Axel O. zur Loye, Mark A. Rosswurm, Paul Daniel Borisuk, Shashank Bishnoi, Matthew W. Isaacs, Jason A. Gore, Atin Tandon, Jamie Robert John Sleigh
-
Patent number: 12055105Abstract: A method for controlling a dual fuel engine system includes determining a friction power loss amount of an internal combustion engine of the dual fuel engine system, where the friction power loss amount is based on an engine speed of the internal combustion engine and a friction torque estimate. The method also includes determining an accessory power loss amount of a power of the internal combustion engine, where the accessory power loss amount is based on the engine speed and an accessory torque estimate. The method further includes estimating a net engine power amount based on the accessory power loss amount and a brake power amount of the internal combustion engine, estimating an indicated diesel power, and estimating, based on the estimated net engine power, a first indicated engine power and a first gas power.Type: GrantFiled: September 14, 2022Date of Patent: August 6, 2024Assignee: Cummins Power Generation Inc.Inventors: Travis Alva Anderson, Axel O. zur Loye, Mark A. Rosswurm, Paul Daniel Borisuk, Shashank Bishnoi, Matthew W. Isaacs, Jason A. Gore, Atin Tandon, Jamie Robert John Sleigh
-
Publication number: 20240141842Abstract: A method for controlling a dual fuel engine system includes determining a gas flow target for an internal combustion engine of the dual fuel engine system, where the gas flow target is based on a gas power target of the internal combustion engine, a thermal efficiency estimate of the internal combustion engine, and a lower heating value (LHV) within the internal combustion engine. The method also includes adjusting the gas flow target based on at least one of a measured gas temperature or a measured gas injector pressure and determining at least one base gas injector command based on the adjusted gas flow target, a gas substitution rate estimate, and a gas substitution rate target. The method further includes determining, based on the at least one base gas injector command, a gas injector command for at least one engine bank.Type: ApplicationFiled: January 2, 2024Publication date: May 2, 2024Applicant: Cummins Power Generation Inc.Inventors: Travis Alva Anderson, Axel O. zur Loye, Mark A. Rosswurm, Paul Daniel Borisuk, Shashank Bishnoi, Matthew W. Isaacs, Jason A. Gore, Atin Tandon, Jamie Robert John Sleigh
-
Publication number: 20240084746Abstract: A method for controlling a dual fuel engine system includes determining a friction power loss amount of an internal combustion engine of the dual fuel engine system, where the friction power loss amount is based on an engine speed of the internal combustion engine and a friction torque estimate. The method also includes determining an accessory power loss amount of a power of the internal combustion engine, where the accessory power loss amount is based on the engine speed and an accessory torque estimate. The method further includes estimating a net engine power amount based on the accessory power loss amount and a brake power amount of the internal combustion engine, estimating an indicated diesel power, and estimating, based on the estimated net engine power, a first indicated engine power and a first gas power.Type: ApplicationFiled: September 14, 2022Publication date: March 14, 2024Inventors: Travis Alva Anderson, Axel O. zur Loye, Mark A. Rosswurm, Paul Daniel Borisuk, Shashank Bishnoi, Matthew W. Isaacs, Jason A. Gore, Atin Tandon, Jamie Robert John Sleigh
-
Publication number: 20240084745Abstract: A method for controlling a dual fuel engine system includes estimating a total indicated engine load, where the total indicated engine load is based on a sum of a measured engine power and a power loss estimate. The method further includes determining a total fueling amount based on an engine speed and the total indicated engine load, where the total fueling amount includes a gas fueling amount and a diesel fueling amount. The method also includes controlling the dual fuel engine system using the total fueling amount.Type: ApplicationFiled: September 14, 2022Publication date: March 14, 2024Inventors: Travis Alva Anderson, Axel O. zur Loye, Mark A. Rosswurm, Paul Daniel Borisuk, Shashank Bishnoi, Matthew W. Isaacs, Jason A. Gore, Atin Tandon, Jamie Robert John Sleigh
-
Patent number: 11873772Abstract: A method for controlling a dual fuel engine system includes determining a gas flow target for an internal combustion engine of the dual fuel engine system, where the gas flow target is based on a gas power target of the internal combustion engine, a thermal efficiency estimate of the internal combustion engine, and a lower heating value (LHV) within the internal combustion engine. The method also includes adjusting the gas flow target based on at least one of a measured gas temperature or a measured gas injector pressure and determining at least one base gas injector command based on the adjusted gas flow target, a gas substitution rate estimate, and a gas substitution rate target. The method further includes determining, based on the at least one base gas injector command, a gas injector command for at least one engine bank.Type: GrantFiled: September 14, 2022Date of Patent: January 16, 2024Assignee: Cummins Power Generation Inc.Inventors: Travis Alva Anderson, Axel O. zur Loye, Mark A. Rosswurm, Paul Daniel Borisuk, Shashank Bishnoi, Matthew W. Isaacs, Jason A. Gore, Atin Tandon, Jamie Robert John Sleigh
-
Patent number: 11466635Abstract: Methods and systems of controlling a dual fuel engine with at least two banks of cylinders are provided. The method may include sensing at least one of temperatures of exhaust from the at least two banks and a pressure of an intake manifold of the at least two banks, and adjusting at least one of a gas flow, a charge flow, or an air flow to one of the at least two banks to balance one of exhaust temperatures of the at least two banks and intake manifold pressures of the at least two banks.Type: GrantFiled: September 13, 2021Date of Patent: October 11, 2022Assignee: CUMMINS INC.Inventors: Axel O. zur Loye, Christopher Pollitt, Timothy O. Lutz
-
Patent number: 11448148Abstract: A method and system of power generating is provided to reduce a startup time of a genset for providing requested power to a utility grid or a load. The genset includes a generator, a turbocharger, and an energy storage. The generator includes an engine. The genset responds to a genset start signal by accelerating an engine speed of the generator to reach a synchronous speed. The engine speed is accelerated more rapidly by activating the energy storage device to supply power to at least one of the generator and the turbocharger. The generator then supplies power to the utility grid or load.Type: GrantFiled: February 25, 2020Date of Patent: September 20, 2022Assignee: CUMMINS INC.Inventors: Axel O. zur Loye, Mark A. Bargent, Andrew G. Kitchen, Robin J. Bremmer, Philipe F. Saad, Milan K. Visaria, Timothy P. Lutz
-
Publication number: 20210404399Abstract: Methods and systems of controlling a dual fuel engine with at least two banks of cylinders are provided. The method may include sensing at least one of temperatures of exhaust from the at least two banks and a pressure of an intake manifold of the at least two banks, and adjusting at least one of a gas flow, a charge flow, or an air flow to one of the at least two banks to balance one of exhaust temperatures of the at least two banks and intake manifold pressures of the at least two banks.Type: ApplicationFiled: September 13, 2021Publication date: December 30, 2021Inventors: Axel O. zur Loye, Christopher Pollitt, Timothy O. Lutz
-
Patent number: 11174822Abstract: A compressor bypass reintroduction system includes a compressor intake manifold and a bypass conduit. The compressor intake manifold defines a fluid plenum. The compressor intake manifold is engageable with a compressor. The bypass conduit extends into the fluid plenum and includes an ejector line. The ejector line is configured to be substantially collinear with the compressor and to discharge flow toward the compressor. In some embodiments, an outlet of the ejector is disposed proximate to an outlet of the fluid plenum that discharges flow into the compressor.Type: GrantFiled: July 13, 2020Date of Patent: November 16, 2021Assignee: Cummins Power Generation Inc.Inventors: Jeremy A. Lackey, Alan C. Anderson, Joshua Bradley Bettis, Steven L. Leffler, Dilip Ramachandran, John A. Rennekamp, Axel O. Zur Loye, Andrew Guy Kitchen, George Martin Tolhurst
-
Patent number: 11136932Abstract: Methods and systems of controlling operation of a dual fuel engine are provided, comprising determining a target exhaust temperature, sensing an actual exhaust temperature, determining an exhaust temperature deviation by comparing the actual exhaust temperature to the target exhaust temperature, comparing the exhaust temperature deviation to a threshold, adjusting at least one of an intake throttle, a wastegate, a compressor bypass valve, an exhaust throttle, a VGT and engine valve timing when the exhaust temperature deviation exceeds the threshold to control charge-flow to the engine, and continuing the adjusting until the exhaust temperature deviation is less than the threshold.Type: GrantFiled: December 17, 2015Date of Patent: October 5, 2021Assignee: Cummins Inc.Inventors: Axel O. zur Loye, Christopher Pollitt, Timothy P. Lutz
-
Publication number: 20200271066Abstract: A method and system of power generating is provided to reduce a startup time of a genset for providing requested power to a utility grid or a load. The genset includes a generator, a turbocharger, and an energy storage. The generator includes an engine. The genset responds to a genset start signal by accelerating an engine speed of the generator to reach a synchronous speed. The engine speed is accelerated more rapidly by activating the energy storage device to supply power to at least one of the generator and the turbocharger. The generator then supplies power to the utility grid or load.Type: ApplicationFiled: February 25, 2020Publication date: August 27, 2020Inventors: Axel O. zur Loye, Mark A. Bargent, Andrew G. Kitchen, Robin J. Bremmer, Philipe F. Saad, Milan K. Visaria, Timothy P. Lutz
-
Patent number: 10273861Abstract: An exhaust aftertreatment system for treating exhaust flow from an internal combustion engine, and associated method, allows for independent control of exhaust flow through plural exhaust legs of the exhaust aftertreatment system. The independent control of exhaust flow is carried out by adjusting a valve positioned in each the exhaust legs based on a value of a signal generated by a flow measurement device positioned along at least one of the exhaust legs. The valves can be adjusted to force a target flow in a exhaust leg, relative flow among exhaust legs, exhaust temperature in an exhaust leg, exhaust backpressure and/or imbalance within the exhaust legs.Type: GrantFiled: May 16, 2018Date of Patent: April 30, 2019Assignee: Cummins Intellectual Property, Inc.Inventors: Colin L. Norris, Richard J. Ancimer, Axel O. zur Loye, Randy W. Nelson, Gary Charles Salemme, Ousmane Gueye, John Franklin Wright
-
Patent number: 10161325Abstract: Disclosed herein is an apparatus for managing combustion in an internal combustion engine that includes an operating condition module configured to determine an operating load of an internal combustion engine. The internal combustion engine can includes multiple banks of cylinders. The apparatus further includes a cylinder bank control module configured to select at least one bank of cylinders of the multiple banks of cylinders to be operational based on the determined operating load of the engine. The apparatus also includes a cylinder bank command module configured to generate a cylinder bank command based on a cylinder bank control instruction received from the cylinder bank control module, the cylinder bank control instruction comprising the selection of the at least one operational bank of cylinders.Type: GrantFiled: January 8, 2014Date of Patent: December 25, 2018Assignee: Cummins IP, Inc.Inventors: Axel O. Zur Loye, Colin L. Norris, Timothy P. Lutz, Richard J. Ancimer, Abhishek Mehrotra
-
Patent number: 10145317Abstract: Disclosed herein is a system for managing combustion in an internal combustion engine includes a detection module that determines a combustion condition of the internal combustion engine. The combustion condition includes one of a first combustion condition or second combustion engine. The system also includes a fuel table module that receives the combustion condition and selects an engine operating request based on data in a first fuel table when the combustion condition is the first combustion condition, and data in a second fuel table when the combustion condition is the second combustion condition. The system additionally includes an engine control module that receives the engine operating request and generates engine operating commands based on the engine operating request.Type: GrantFiled: February 18, 2014Date of Patent: December 4, 2018Assignee: Cummins IP, Inc.Inventors: Axel O. zur Loye, David J. Reynolds
-
Publication number: 20180258823Abstract: An exhaust aftertreatment system for treating exhaust flow from an internal combustion engine, and associated method, allows for independent control of exhaust flow through plural exhaust legs of the exhaust aftertreatment system. The independent control of exhaust flow is carried out by adjusting a valve positioned in each the exhaust legs based on a value of a signal generated by a flow measurement device positioned along at least one of the exhaust legs. The valves can be adjusted to force a target flow in a exhaust leg, relative flow among exhaust legs, exhaust temperature in an exhaust leg, exhaust backpressure and/or imbalance within the exhaust legs.Type: ApplicationFiled: May 16, 2018Publication date: September 13, 2018Applicant: CUMMINS INTELLECTUAL PROPERTY, INC.Inventors: Colin L. Norris, Richard J. Ancimer, Axel O. zur Loye, Randy W. Nelson, Gary Charles Salemme, Ousmane Gueye, John Franklin Wright
-
Patent number: 10001047Abstract: An exhaust aftertreatment system for treating exhaust flow from an internal combustion engine, and associated method, allows for independent control of exhaust flow through plural exhaust legs of the exhaust aftertreatment system. The independent control of exhaust flow is carried out by adjusting a valve positioned in each the exhaust legs based on a value of a signal generated by a flow measurement device positioned along at least one of the exhaust legs. The valves can be adjusted to force a target flow in a exhaust leg, relative flow among exhaust legs, exhaust temperature in an exhaust leg, exhaust backpressure and/or imbalance within the exhaust legs.Type: GrantFiled: August 28, 2015Date of Patent: June 19, 2018Assignee: Cumming Intellectual Property, Inc.Inventors: Colin L. Norris, Richard J. Ancimer, Axel O. zur Loye, Randy W. Nelson, Gary Charles Salemme, Ousmane Gueye, John Franklin Wright
-
Publication number: 20180003118Abstract: Methods and systems of controlling operation of a dual fuel engine are provided, comprising determining a target exhaust temperature, sensing an actual exhaust temperature, determining an exhaust temperature deviation by comparing the actual exhaust temperature to the target exhaust temperature, comparing the exhaust temperature deviation to a threshold, adjusting at least one of an intake throttle, a wastegate, a compressor bypass valve, an exhaust throttle, a VGT and engine valve timing when the exhaust temperature deviation exceeds the threshold to control charge-flow to the engine, and continuing the adjusting until the exhaust temperature deviation is less than the threshold.Type: ApplicationFiled: December 17, 2014Publication date: January 4, 2018Inventors: Axel O. zur Loye, Christopher Pollitt, Timothy O. Lutz
-
Patent number: 9371789Abstract: This disclosure provides a system and method that eliminates the need for manually calibrating or adjusting a dual fuel internal combustion engine to compensate for variations in composition of a gaseous fuel or other variations, such as ambient or site conditions. The system and method functions by determining an engine load, determining an advantageous gaseous fuel substitution rate from the engine load and speed in addition to an actual gaseous fuel substitution rate, modifying the advantageous gaseous fuel substitution rate by a minimum liquid fuel flow rate, engine protection parameters, and oxidation catalyst protection parameters, and then determining an error term in response to the modified advantageous gaseous fuel substitution rate and the actual gaseous fuel substitution rate. The error term is used to adjust a gaseous fuel control valve.Type: GrantFiled: June 20, 2014Date of Patent: June 21, 2016Assignee: CUMMINS INC.Inventors: Mark A. Rosswurm, Axel O. zur Loye