Patents by Inventor Axel Preusse

Axel Preusse has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9620453
    Abstract: A method includes providing a semiconductor structure including a recess. The recess includes at least one of a contact via and a trench. A layer of a first metal is deposited over the semiconductor structure. An electroless deposition process is performed. The electroless deposition process removes a first portion of the layer of first metal from the semiconductor structure and deposits a first layer of a second metal over the semiconductor structure. An electroplating process is performed. The electroplating process deposits a second layer of the second metal over the first layer of second metal. A second portion of the layer of first metal remains in the semiconductor structure.
    Type: Grant
    Filed: October 13, 2014
    Date of Patent: April 11, 2017
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Axel Preusse, Romy Liske, Marcus Wislicenus, Robert Krause, Lukas Gerlich, Benjamin Uhlig, Sascha Bott
  • Publication number: 20160104638
    Abstract: A method includes providing a semiconductor structure including a recess. The recess includes at least one of a contact via and a trench. A layer of a first metal is deposited over the semiconductor structure. An electroless deposition process is performed. The electroless deposition process removes a first portion of the layer of first metal from the semiconductor structure and deposits a first layer of a second metal over the semiconductor structure. An electroplating process is performed. The electroplating process deposits a second layer of the second metal over the first layer of second metal. A second portion of the layer of first metal remains in the semiconductor structure.
    Type: Application
    Filed: October 13, 2014
    Publication date: April 14, 2016
    Inventors: Axel Preusse, Romy Liske, Marcus Wislicenus, Robert Krause, Lukas Gerlich, Benjamin Uhlig, Sascha Bott
  • Patent number: 9305878
    Abstract: Integrated circuits and methods for fabricating integrated circuits are provided. In an exemplary embodiment, an integrated circuit includes a metal contact structure, an electrically conductive capping layer formed on the metal contact structure, and a conductive via electrically connected to the metal contact structure through the electrically conductive capping layer.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: April 5, 2016
    Assignee: GLOBALFOUNDRIES, INC.
    Inventors: Torsten Huisinga, Carsten Peters, Andreas Ott, Axel Preusse
  • Publication number: 20150097291
    Abstract: Integrated circuits and methods for fabricating integrated circuits are provided. In an exemplary embodiment, an integrated circuit includes a metal contact structure, an electrically conductive capping layer formed on the metal contact structure, and a conductive via electrically connected to the metal contact structure through the electrically conductive capping layer.
    Type: Application
    Filed: December 15, 2014
    Publication date: April 9, 2015
    Inventors: Torsten Huisinga, Carsten Peters, Andreas Ott, Axel Preusse
  • Patent number: 8951900
    Abstract: The present disclosure is directed to, among other things, an illustrative method that includes forming an opening in a dielectric material of a contact level of a semiconductor device, and selectively depositing a conductive material in the opening to form a contact element therein, the contact element extending to a contact area of a circuit element and having a laterally restricted excess portion formed outside of the opening and above the dielectric material. The disclosed method further includes forming a sacrificial material layer above the dielectric material and the contact element, the sacrificial material layer surrounding the laterally restricted excess portion. Additionally, the method includes planarizing a surface topography of the contact level in the presence of the sacrificial material so as to remove the laterally restricted excess portion from above the dielectric material.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: February 10, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Axel Preusse, Norbert Schroeder, Uwe Stoeckgen
  • Patent number: 8932911
    Abstract: Integrated circuits and methods for fabricating integrated circuits are provided. In an exemplary embodiment, a method for fabricating integrated circuits includes forming a metal contact structure that is electrically connected to a device. A capping layer is selectively formed on the metal contact structure, and an interlayer dielectric material is deposited over the capping layer. A metal hard mask is deposited and patterned over the interlayer dielectric material to define an exposed region of the interlayer dielectric material. The method etches the exposed region of the interlayer dielectric material to expose at least a portion of the capping layer. The method includes removing the metal hard mask with an etchant while the capping layer physically separates the metal contact structure from the etchant. A metal is deposited to form a conductive via electrically connected to the metal contact structure through the capping layer.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: January 13, 2015
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Torsten Huisinga, Carsten Peters, Andreas Ott, Axel Preusse
  • Patent number: 8883610
    Abstract: In sophisticated metallization systems, air gaps may be formed on the basis of a self-aligned patterning regime during which the conductive cap material of metal lines may be protected by providing one or more materials, which may subsequently be removed. Consequently, the etch behavior and the electrical characteristics of metal lines during the self-aligned patterning regime may be individually adjusted.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: November 11, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Robert Seidel, Markus Nopper, Axel Preusse
  • Publication number: 20140239503
    Abstract: Integrated circuits and methods for fabricating integrated circuits are provided. In an exemplary embodiment, a method for fabricating integrated circuits includes forming a metal contact structure that is electrically connected to a device. A capping layer is selectively formed on the metal contact structure, and an interlayer dielectric material is deposited over the capping layer. A metal hard mask is deposited and patterned over the interlayer dielectric material to define an exposed region of the interlayer dielectric material. The method etches the exposed region of the interlayer dielectric material to expose at least a portion of the capping layer. The method includes removing the metal hard mask with an etchant while the capping layer physically separates the metal contact structure from the etchant. A metal is deposited to form a conductive via electrically connected to the metal contact structure through the capping layer.
    Type: Application
    Filed: February 27, 2013
    Publication date: August 28, 2014
    Applicant: GLOBALFOUNDRIES, INC.
    Inventors: Torsten Huisinga, Carsten Peters, Andreas Ott, Axel Preusse
  • Publication number: 20130237057
    Abstract: The present disclosure is directed to, among other things, an illustrative method that includes forming an opening in a dielectric material of a contact level of a semiconductor device, and selectively depositing a conductive material in the opening to form a contact element therein, the contact element extending to a contact area of a circuit element and having a laterally restricted excess portion formed outside of the opening and above the dielectric material. The disclosed method further includes forming a sacrificial material layer above the dielectric material and the contact element, the sacrificial material layer surrounding the laterally restricted excess portion. Additionally, the method includes planarizing a surface topography of the contact level in the presence of the sacrificial material so as to remove the laterally restricted excess portion from above the dielectric material.
    Type: Application
    Filed: April 25, 2013
    Publication date: September 12, 2013
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Axel Preusse, Norbert Schroeder, Uwe Stoeckgen
  • Patent number: 8450197
    Abstract: Contact elements in the contact level of a semiconductor device may be formed on the basis of a selective deposition technique, such as electroless plating, wherein an efficient planarization of the contact level is achieved without subjecting the contact elements to undue mechanical stress. In some illustrative embodiments, an overfilling of the contact openings may be reliably avoided and the planarization of the surface topography is accomplished on the basis of a non-critical polishing process. In other cases, electrochemical etch techniques are applied in combination with a conductive sacrificial current distribution layer in order to remove any excess material of the contact elements without inducing undue mechanical stress.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: May 28, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Axel Preusse, Norbert Schroeder, Uwe Stoeckgen
  • Patent number: 8389401
    Abstract: When forming contact levels of sophisticated semiconductor devices, a superior bottom to top fill behavior may be accomplished by applying an activation material selectively in the lower part of the contact openings and using a selective deposition technique. Consequently, deposition-related irregularities, such as voids, may be efficiently suppressed even for high aspect ratio contact openings.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: March 5, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Robert Seidel, Markus Nopper, Axel Preusse
  • Patent number: 8314494
    Abstract: A conductive cap material for a copper region may be provided with enhanced etch resistivity by taking into consideration the standard electrode potential of one or more of the species contained therein. For example, instead of a conventionally used CoWP alloy, a modified alloy may be used, by substituting the cobalt species by a metallic species having a less negative standard electrode potential, such as nickel. Consequently, device performance may be enhanced, while at the same time the overall process complexity may be reduced.
    Type: Grant
    Filed: January 19, 2009
    Date of Patent: November 20, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Markus Nopper, Axel Preusse, Robert Seidel
  • Patent number: 8153524
    Abstract: During the formation of complex metallization systems, a conductive cap layer may be formed on a copper-containing metal region in order to enhance the electromigration behavior without negatively affecting the overall conductivity. At the same time, a thermo chemical treatment may be performed to provide superior surface conditions of the sensitive dielectric material and also to suppress carbon depletion, which may conventionally result in a significant variability of material characteristics of sensitive ULK materials.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: April 10, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Oliver Aubel, Joerg Hohage, Frank Feustel, Axel Preusse
  • Publication number: 20110244679
    Abstract: Contact elements in the contact level of a semiconductor device may be formed on the basis of a selective deposition technique, such as electroless plating, wherein an efficient planarization of the contact level is achieved without subjecting the contact elements to undue mechanical stress. In some illustrative embodiments, an overfilling of the contact openings may be reliably avoided and the planarization of the surface topography is accomplished on the basis of a non-critical polishing process. In other cases, electrochemical etch techniques are applied in combination with a conductive sacrificial current distribution layer in order to remove any excess material of the contact elements without inducing undue mechanical stress.
    Type: Application
    Filed: December 8, 2010
    Publication date: October 6, 2011
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Axel Preusse, Norbert Schroeder, Uwe Stoeckgen
  • Patent number: 7985329
    Abstract: By providing two or more consumable electrodes within a single reactor vessel, an alloy having a high degree of chemical ordering may be deposited in situ in that the current flows of the individual consumable electrodes are controlled to obtain a substantially layered deposition of the two or more metals. Hence, especially in copper-based metallization layers, the advantage of enhanced resistance against electromigration offered by alloys may be achieved without unduly reducing the overall conductivity.
    Type: Grant
    Filed: October 25, 2005
    Date of Patent: July 26, 2011
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Axel Preusse, Gerd Marxsen
  • Patent number: 7981793
    Abstract: By suppressing the presence of free oxygen during a cleaning process and a subsequent electrochemical deposition of a seed layer, the quality of a corresponding interface between the barrier material and the seed layer may be enhanced, thereby also improving performance and the characteristics of the finally obtained metal region. Thus, by identifying free oxygen as a main source for negatively affecting the characteristics of metals during a “direct on barrier” plating process, efficient strategies have been developed and are disclosed herein to provide a reliable technique for volume production of sophisticated semiconductor devices.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: July 19, 2011
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Axel Preusse, Charlotte Emnet, Susanne Wehner
  • Publication number: 20110156270
    Abstract: When forming contact levels of sophisticated semiconductor devices, a superior bottom to top fill behavior may be accomplished by applying an activation material selectively in the lower part of the contact openings and using a selective deposition technique. Consequently, deposition-related irregularities, such as voids, may be efficiently suppressed even for high aspect ratio contact openings.
    Type: Application
    Filed: October 25, 2010
    Publication date: June 30, 2011
    Inventors: Robert Seidel, Markus Nopper, Axel Preusse
  • Patent number: 7947158
    Abstract: The present invention is directed to methods and apparatuses for removing bubbles from a process liquid. The process liquid can comprise a plating solution used in a plating tool. The process liquid is supplied to a tank. A plurality of streams of the process liquid are directed towards a surface of the process liquid from below. This can be done by feeding the process liquid to a flow distributor comprising a plurality of openings providing flow communication between an inner volume of the flow distributor and a main volume of the tank. Before leaving the tank through an outlet, the process liquid flows through a flow barrier.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: May 24, 2011
    Assignee: GlobalFoundries Inc.
    Inventors: Helge Hartz, Markus Nopper, Axel Preusse
  • Publication number: 20100289125
    Abstract: In sophisticated semiconductor devices, the electromigration performance of copper metal lines at the top interface thereof may be enhanced by forming a copper alloy that is locally restricted to the interface. To this end, an appropriate alloy-forming species, such as aluminum, may be provided on the basis of a non-masked deposition process and may be subsequently removed by a non-masked etch process, wherein the characteristic of the resulting alloy may be adjusted during an intermediate heat treatment.
    Type: Application
    Filed: April 28, 2010
    Publication date: November 18, 2010
    Inventors: Frank Feustel, Tobias Letz, Axel Preusse
  • Publication number: 20100221911
    Abstract: During the formation of complex metallization systems, a conductive cap layer may be formed on a copper-containing metal region in order to enhance the electromigration behavior without negatively affecting the overall conductivity. At the same time, a thermo chemical treatment may be performed to provide superior surface conditions of the sensitive dielectric material and also to suppress carbon depletion, which may conventionally result in a significant variability of material characteristics of sensitive ULK materials.
    Type: Application
    Filed: February 24, 2010
    Publication date: September 2, 2010
    Inventors: Oliver Aubel, Joerg Hohage, Frank Feustel, Axel Preusse