Patents by Inventor Axel Scherer

Axel Scherer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11969246
    Abstract: A sensor implanted in tissues and including a sensing layer is fabricated by mixing the signal transduction enzyme with non-reactive components including buffer salts and fillers, and spin coating the enzyme onto a substrate. The signal transduction enzyme is crosslinked by introducing the coated substrate in a vacuum chamber. In the chamber, a crosslinker evaporates and is deposited onto the enzyme, therefore crosslinking the enzyme.
    Type: Grant
    Filed: May 17, 2023
    Date of Patent: April 30, 2024
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Samson Chen, Axel Scherer, Dvin I. Adalian, Peter Petillo, Muhammad Musab Jilani, Xiomara L. Madero, Deepan Kishore Kumar
  • Publication number: 20240125819
    Abstract: The present disclosure is directed toward systems and methods for measuring electric current in a multi-wire cable, as well as the apparent and real power associated with an electrical load connected to the cable. A probe comprising an array of small form-factor, high-speed magnetometers is operatively coupled with the cable such that the magnetometers partially surround the cable. Each magnetometer detects the composite magnetic field at its location, and this plurality of measurements is used to generate a magnetic-field map. The contributions of the current flow in each wire are identified by deconvolving the magnetic-field map, enabling their locations to be determined and monitoring of the current and power flow. A sensor included in the probe is used to determine the phase of the applied voltage. The phase difference between the voltage and current is then used to determine the real power dissipation of the load.
    Type: Application
    Filed: October 6, 2023
    Publication date: April 18, 2024
    Inventors: Axel Scherer, John Richard Ordonez-Varela, Samson CHEN, Pasha RESHETIKHIN
  • Patent number: 11959856
    Abstract: Methods and algorithms for a multiplexed single detection channel amplification process and quantification of generated amplicons is presented. Various mathematical approaches for quantifying and verifying the amplicons in a reaction are presented. Usage of such methods and approaches allow upgrading of existing single and multiple channel instruments for further multiplexing capabilities.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: April 16, 2024
    Assignee: California Institute of Technology
    Inventors: Imran R. Malik, Xiomara Linnette Madero, Erika F. Garcia, Sheel Mukesh Shah, Axel Scherer
  • Publication number: 20240110837
    Abstract: A temperature monitoring system includes a semiconductor member mounted onto the surface of an object having a surface whose temperature is to be monitored. The semiconductor member has a temperature-dependent bandgap with an absorption edge that varies with temperature. A light source is configured to illuminate the semiconductor member with monochromatic light. The monochromatic light has a wavelength equal to an absorption edge wavelength that is associated with the absorption edge when the semiconductor member is at a specified temperature. A detector is configured to receive light reflected from the semiconductor member when illuminated with the monochromatic light such that a surface temperature of the object is at the specified temperature when a change in an amount of reflected light that is received indicates that the wavelength of the monochromatic light is equal to the absorption edge wavelength at the specified temperature.
    Type: Application
    Filed: October 4, 2023
    Publication date: April 4, 2024
    Inventors: Axel SCHERER, Jack JEWELL, John Richard ORDONEZ-VARELA, Paromita MITCHELL
  • Publication number: 20240093273
    Abstract: This disclosure provides methods, systems, compositions, and kits for the multiplexed detection of a plurality of analytes in a sample. In some examples, this disclosure provides methods, systems, compositions, and kits wherein multiple analytes may be detected in a single sample volume by acquiring a cumulative measurement or measurements of at least one quantifiable component of a signal. In some cases, additional components of a signal, or additional signals (or components thereof) are also quantified. Each signal or component of a signal may be used to construct a coding scheme which can then be used to determine the presence or absence of any analyte.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 21, 2024
    Inventors: Emil P. KARTALOV, Aditya RAJAGOPAL, Axel SCHERER
  • Patent number: 11903708
    Abstract: A sensor implanted in tissues and including a sensing enzyme takes an electrical measurement and compares it to reference curves for the voltage current relationship. The sensor determines whether molecular compounds are present which interfere with the detection of the molecule of interest. If interfering species are found, the measurement voltage is set in a low range to reduce errors, while if the interfering species are not found, the measurement voltage is set in a high range to increase the detected signal.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: February 20, 2024
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Samson Chen, Axel Scherer, Muhammad Musab Jilani, Xiomara L. Madero
  • Patent number: 11904045
    Abstract: An implantable device contains a drug or biosensing compound, protected from the external environment within a human body by several barriers which are broken upon activation of the device through electrothermal, chemical, and mechanical processes. The device allows accurate and repeated dosing within a human body, thus reducing the number of implantation procedures required. This device extends the lifetime of a biosensor, reducing the number of implantation procedures required.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: February 20, 2024
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Samson Chen, Axel Scherer, Richard Daniel Smith, Jr.
  • Patent number: 11879162
    Abstract: A non-transitory computer-readable storage medium storing executable instructions to cause a system to detect a genetic variation in a polynucleotide analyte in a sample. A fluorophore is attached to a first primer, a quencher is attached to a second primer, and the first primer and the second primer are specific for the polynucleotide analyte. The primers are configured to amplify the polynucleotide analyte having the genetic variation and a corresponding polynucleotide analyte lacking the generic variation. There is a detectable difference between a measured change in signal generated by the fluorophore and quencher, when using the first and second primers to amplify the polynucleotide analyte with the genetic variation, and a change in signal generated by the fluorophore and quencher, when using the first and second primers to amplify the corresponding polynucleotide analyte lacking the genetic variation.
    Type: Grant
    Filed: July 5, 2022
    Date of Patent: January 23, 2024
    Assignee: California Institute of Technology
    Inventors: Aditya Rajagopal, Mark D. Goldberg, Erika F. Garcia, Xiomara L. Madero, Thomas A. Tombrello, Axel Scherer
  • Publication number: 20240018573
    Abstract: This disclosure provides methods, systems, compositions, and kits for the multiplexed detection of a plurality of analytes in a sample. In some examples, this disclosure provides methods, systems, compositions, and kits wherein multiple analytes may be detected in a single sample volume by acquiring a cumulative measurement or measurements of at least one quantifiable component of a signal. In some cases, additional components of a signal, or additional signals (or components thereof) are also quantified. Each signal or component of a signal may be used to construct a coding scheme which can then be used to determine the presence or absence of any analyte.
    Type: Application
    Filed: July 13, 2023
    Publication date: January 18, 2024
    Inventors: Emil P. KARTALOV, Aditya RAJAGOPAL, Axel SCHERER
  • Patent number: 11866768
    Abstract: This disclosure provides methods, systems, compositions, and kits for the multiplexed detection of a plurality of analytes in a sample. In some examples, this disclosure provides methods, systems, compositions, and kits wherein multiple analytes may be detected in a single sample volume by acquiring a cumulative measurement or measurements of at least one quantifiable component of a signal. In some cases, additional components of a signal, or additional signals (or components thereof) are also quantified. Each signal or component of a signal may be used to construct a coding scheme which can then be used to determine the presence or absence of any analyte.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: January 9, 2024
    Assignee: California Institute of Technology
    Inventors: Emil P. Kartalov, Aditya Rajagopal, Axel Scherer
  • Patent number: 11827921
    Abstract: This disclosure provides methods, systems, compositions, and kits for the multiplexed detection of a plurality of analytes in a sample. In some examples, this disclosure provides methods, systems, compositions, and kits wherein multiple analytes may be detected in a single sample volume by acquiring a cumulative measurement or measurements of at least one quantifiable component of a signal. In some cases, additional components of a signal, or additional signals (or components thereof) are also quantified. Each signal or component of a signal may be used to construct a coding scheme which can then be used to determine the presence or absence of any analyte.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: November 28, 2023
    Assignee: California Institute of Technology
    Inventors: Emil P. Kartalov, Aditya Rajagopal, Axel Scherer
  • Publication number: 20230363672
    Abstract: A sensor implanted in tissues and including a sensing layer is fabricated by mixing the signal transduction enzyme with non-reactive components including buffer salts and fillers, and spin coating the enzyme onto a substrate. The signal transduction enzyme is crosslinked by introducing the coated substrate in a vacuum chamber. In the chamber, a crosslinker evaporates and is deposited onto the enzyme, therefore crosslinking the enzyme.
    Type: Application
    Filed: May 17, 2023
    Publication date: November 16, 2023
    Inventors: Samson CHEN, Axel SCHERER, Dvin I. ADALIAN, Peter PETILLO, Muhammad Musab JILANI, Xiomara L. MADERO, Deepan KISHORE KUMAR
  • Publication number: 20230333294
    Abstract: The present disclosure is directed toward the simultaneous formation of a plurality of optical elements on a common substrate, where each optical element includes at least one layer having a desired non-uniform-thickness variation. Each such layer is formed such that it includes a plurality of material patterns characterized by the non-uniform thickness variation, where each material pattern is disposed on a different deposition site on the substrate. The material patterns are configured such that adjacent optical elements are separated by a boundary region for facilitating dicing of the substrate into individual optical elements. The non-uniform-thickness layer is formed by direct deposition through a shadow mask that includes a plurality of mask patterns that are either (1) configured to pass material flux in a non-uniform manner or (2) configured to shadow different portions of their respective deposition regions while being moved relative to the substrate.
    Type: Application
    Filed: April 13, 2023
    Publication date: October 19, 2023
    Inventors: Axel Scherer, Ph.D., Jack Jewell, Taeyoon Jeon
  • Publication number: 20230258848
    Abstract: An optical-thin-film structure comprises a low-index optical thin film consisting essentially of co-deposited Barium Fluoride and a secondary fluoride compound, and a high-index optical thin film.
    Type: Application
    Filed: December 29, 2022
    Publication date: August 17, 2023
    Inventors: Taeyoon JEON, Axel SCHERER, Jack JEWELL
  • Publication number: 20230233082
    Abstract: An implantable device having a communication system, a sensor, and a monolithic substrate is described. The monolithic substrate has an integrated sensor circuit configured to process input from the sensor into a form conveyable by the communication system.
    Type: Application
    Filed: October 19, 2022
    Publication date: July 27, 2023
    Inventors: Muhammad MUJEEB-U-RAHMAN, Axel SCHERER
  • Patent number: 11690544
    Abstract: A sensor implanted in tissues and including a sensing layer is fabricated by mixing the signal transduction enzyme with non-reactive components including buffer salts and fillers, and spin coating the enzyme onto a substrate. The signal transduction enzyme is crosslinked by introducing the coated substrate in a vacuum chamber. In the chamber, a crosslinker evaporates and is deposited onto the enzyme, therefore crosslinking the enzyme.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: July 4, 2023
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Samson Chen, Axel Scherer, Dvin Adalian, Peter Petillo, Muhammad Musab Jilani, Xiomara L. Madero, Deepan Kishore Kumar
  • Patent number: 11674960
    Abstract: An implantable diagnostic device in accordance with the present disclosure provides various benefits such as a compact size thereby allowing implanting of the device inside animate objects; low cost due to incorporation of inexpensive detection circuitry and the use of conventional IC fabrication techniques; re-usability by heating thereby allowing multiple diagnostic tests to be performed without discarding the device; and a configuration that allows performing of simultaneous and/or sequential diagnostic tests for detecting one or more similar or dissimilar target molecules concurrently or at different times.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: June 13, 2023
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Axel Scherer, Samuel Njoroge, Jingqing Huang
  • Patent number: 11666216
    Abstract: A smart cage includes radiofrequency transceivers and tags attached to laboratory animals. The tags include sensors to detect monitorable conditions of the laboratory animals. The sensors include working electrodes, counter electrodes, reference electrodes, and potentiostats. The top surface of the electrodes is coated with ionophores or enzymes which detect the monitorable conditions of the laboratory animals.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: June 6, 2023
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Axel Scherer, Peter A Petillo, Samson Chen, Azita Emami
  • Publication number: 20230151440
    Abstract: A non-transitory computer-readable storage medium storing executable instructions to cause a system to detect a genetic variation in a polynucleotide analyte in a sample. A fluorophore is attached to a first primer, a quencher is attached to a second primer, and the first primer and the second primer are specific for the polynucleotide analyte. The primers are configured to amplify the polynucleotide analyte having the genetic variation and a corresponding polynucleotide analyte lacking the generic variation. There is a detectable difference between a measured change in signal generated by the fluorophore and quencher, when using the first and second primers to amplify the polynucleotide analyte with the genetic variation, and a change in signal generated by the fluorophore and quencher, when using the first and second primers to amplify the corresponding polynucleotide analyte lacking the genetic variation.
    Type: Application
    Filed: July 5, 2022
    Publication date: May 18, 2023
    Inventors: Aditya Rajagopal, Mark D. Goldberg, Erika F. Garcia, Xiomara L. Madero, Thomas A. Tombrello, Axel Scherer
  • Publication number: 20230152211
    Abstract: The present disclosure is directed toward measurement systems capable of optical analysis of a test sample. Embodiments in accordance with the present disclosure include a sample holder having a plurality of projections that extend from a planar surface, where the projections and planar surface collectively define an open sample-collection surface that enables an interrogation signal direct access to the test sample. The projections can be dimensioned and arranged to collectively define a geometric anti-reflection surface that is substantially non-reflective for the interrogation signal even at large angles of incidence. In some embodiments, the sample holder is configured as a reflective element that enables multiple passes of the interrogation signal through the test sample. In some embodiments, the sample holder is configured as a transmissive element. In some embodiments, the projections themselves are reflective.
    Type: Application
    Filed: November 9, 2022
    Publication date: May 18, 2023
    Inventors: Jack Jewell, Axel Scherer, Ph.D., Amirhossein Nateghi, Taeyoon Jeon