Patents by Inventor Aya UCHIDA

Aya UCHIDA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11912905
    Abstract: The present invention aims to provide an adhesive tape capable of exhibiting excellent adhesion to rough surfaces. The present invention also aims to provide a method for fixing an electronic device component or an in-vehicle device component using the adhesive tape and a method for producing an electronic device or an in-vehicle device. Provided is an adhesive tape including an adhesive layer containing an acrylic copolymer, the acrylic copolymer containing 30% by weight or more of a structural unit derived from n-heptyl (meth)acrylate and 0.01% by weight or more and 30% by weight or less of a structural unit derived from 1-methylheptyl (meth)acrylate.
    Type: Grant
    Filed: March 22, 2022
    Date of Patent: February 27, 2024
    Assignee: SEKISUI CHEMICAL CO., LTD.
    Inventors: Aya Adachi, Yudai Ogata, Noriyuki Uchida, Yoshito Arai
  • Publication number: 20230361267
    Abstract: To provide a positive electrode active material with which the cycle performance of a secondary battery can be improved and a manufacturing method thereof. When a secondary battery is fabricated using, for a positive electrode, a positive electrode active material obtained by depositing a solid electrolyte on a lithium compound with the use of a graphene compound by spray-drying treatment and volatilizing carbon from the graphene compound by heat treatment, the decomposition of an electrolyte solution in contact with the positive electrode active material can be inhibited, contributing to improvement in the cycle performance of the secondary battery.
    Type: Application
    Filed: July 13, 2023
    Publication date: November 9, 2023
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yohei Momma, Mayumi MIKAMI, Aya UCHIDA, Kazuhito MACHIKAWA
  • Patent number: 11799080
    Abstract: A positive electrode active material having high capacity and excellent cycle performance is provided. The positive electrode active material has a small difference in a crystal structure between the charged state and the discharged state. For example, the crystal structure and volume of the positive electrode active material, which has a layered rock-salt crystal structure in the discharged state and a pseudo-spinel crystal structure in the charged state at a high voltage of approximately 4.6 V, are less likely to be changed by charge and discharge as compared with those of a known positive electrode active material.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: October 24, 2023
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Mayumi Mikami, Aya Uchida, Yumiko Yoneda, Yohei Momma, Masahiro Takahashi, Teruaki Ochiai
  • Patent number: 11777089
    Abstract: A positive electrode active material having high capacity and excellent cycle performance is provided. The positive electrode active material has a small difference in a crystal structure between the charged state and the discharged state. For example, the crystal structure and volume of the positive electrode active material, which has a layered rock-salt crystal structure in the discharged state and a pseudo-spinel crystal structure in the charged state at a high voltage of approximately 4.6 V, are less likely to be changed by charge and discharge as compared with those of a known positive electrode active material.
    Type: Grant
    Filed: April 26, 2022
    Date of Patent: October 3, 2023
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Mayumi Mikami, Aya Uchida, Yumiko Yoneda, Yohei Momma, Masahiro Takahashi, Teruaki Ochiai
  • Patent number: 11735736
    Abstract: A power storage device with high capacity or high energy density is provided. A highly reliable power storage device is provided. A long-life power storage device is provided. An electrode includes an active material, a first binder, and a second binder. The specific surface area of the active material is S [m2/g]. The weight of the active material, the weight of the first binder, and the weight of the second binder are a, b, and c, respectively. The solution of {(b+c)/(a+b+c)}×100÷S is 0.3 or more. The electrode includes a first film in contact with the active material. The first film preferably includes a region in contact with the active material. The first film preferably includes a region with a thickness of 2 nm or more and 20 nm or less. The first film contains a water-soluble polymer.
    Type: Grant
    Filed: October 14, 2021
    Date of Patent: August 22, 2023
    Assignee: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Kai Kimura, Kazutaka Kuriki, Teppei Oguni, Aya Uchida
  • Patent number: 11616231
    Abstract: A positive electrode active material having high capacity and excellent cycle performance is provided. The positive electrode active material has a small difference in a crystal structure between the charged state and the discharged state. For example, the crystal structure and volume of the positive electrode active material, which has a layered rock-salt crystal structure in the discharged state and a pseudo-spinel crystal structure in the charged state at a high voltage of approximately 4.6 V, are less likely to be changed by charge and discharge as compared with those of a known positive electrode active material.
    Type: Grant
    Filed: May 23, 2022
    Date of Patent: March 28, 2023
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Mayumi Mikami, Aya Uchida, Yumiko Yoneda, Yohei Momma, Masahiro Takahashi, Teruaki Ochiai
  • Publication number: 20220285681
    Abstract: A positive electrode active material having high capacity and excellent cycle performance is provided. The positive electrode active material has a small difference in a crystal structure between the charged state and the discharged state. For example, the crystal structure and volume of the positive electrode active material, which has a layered rock-salt crystal structure in the discharged state and a pseudo-spinel crystal structure in the charged state at a high voltage of approximately 4.6 V, are less likely to be changed by charge and discharge as compared with those of a known positive electrode active material.
    Type: Application
    Filed: May 23, 2022
    Publication date: September 8, 2022
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Mayumi MIKAMI, Aya UCHIDA, Yumiko YONEDA, Yohei MOMMA, Masahiro TAKAHASHI, Teruaki OCHIAI
  • Publication number: 20220255076
    Abstract: A positive electrode active material having high capacity and excellent cycle performance is provided. The positive electrode active material has a small difference in a crystal structure between the charged state and the discharged state. For example, the crystal structure and volume of the positive electrode active material, which has a layered rock-salt crystal structure in the discharged state and a pseudo-spinel crystal structure in the charged state at a high voltage of approximately 4.6 V, are less likely to be changed by charge and discharge as compared with those of a known positive electrode active material.
    Type: Application
    Filed: April 26, 2022
    Publication date: August 11, 2022
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Mayumi MIKAMI, Aya UCHIDA, Yumiko YONEDA, Yohei MOMMA, Masahiro TAKAHASHI, Teruaki OCHIAI
  • Publication number: 20220037666
    Abstract: A power storage device with high capacity or high energy density is provided. A highly reliable power storage device is provided. A long-life power storage device is provided. An electrode includes an active material, a first binder, and a second binder. The specific surface area of the active material is S [m2/g]. The weight of the active material, the weight of the first binder, and the weight of the second binder are a, b, and c, respectively. The solution of {(b+c)/(a+b+c)}×100÷S is 0.3 or more. The electrode includes a first film in contact with the active material. The first film preferably includes a region in contact with the active material. The first film preferably includes a region with a thickness of 2 nm or more and 20 nm or less. The first film contains a water-soluble polymer.
    Type: Application
    Filed: October 14, 2021
    Publication date: February 3, 2022
    Inventors: Kai Kimura, Kazutaka Kuriki, Teppei Oguni, Aya Uchida
  • Patent number: 11152622
    Abstract: A power storage device with high capacity or high energy density is provided. A highly reliable power storage device is provided. A long-life power storage device is provided. An electrode includes an active material, a first binder, and a second binder. The specific surface area of the active material is S [m2/g]. The weight of the active material, the weight of the first binder, and the weight of the second binder are a, b, and c, respectively. The solution of {(b+c)/(a+b+c)}×100÷S is 0.3 or more. The electrode includes a first film in contact with the active material. The first film preferably includes a region in contact with the active material. The first film preferably includes a region with a thickness of 2 nm or more and 20 nm or less. The first film contains a water-soluble polymer.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: October 19, 2021
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kai Kimura, Kazutaka Kuriki, Teppei Oguni, Aya Uchida
  • Publication number: 20210104744
    Abstract: Provided is a layer for preventing a short circuit between a positive electrode and a negative electrode in a solid battery using a layer containing a solid electrolyte. As the solid electrolyte between the positive electrode and the negative electrode, a layer containing a graphene compound is used. Lithium ions can pass through the layer containing the graphene compound. Lithium ions are added in advance in the layer containing the graphene compound. Specifically, a modifier is used, and a graphene compound chemically modified with a functional group such as ether and ester with an increased interlayer distance is used.
    Type: Application
    Filed: December 4, 2017
    Publication date: April 8, 2021
    Inventors: Teppei OGUNI, Aya UCHIDA, Hiroshi KADOMA
  • Publication number: 20210083281
    Abstract: A positive electrode active material having high capacity and excellent cycle performance is provided. The positive electrode active material has a small difference in a crystal structure between the charged state and the discharged state. For example, the crystal structure and volume of the positive electrode active material, which has a layered rock-salt crystal structure in the discharged state and a pseudo-spinel crystal structure in the charged state at a high voltage of approximately 4.6 V, are less likely to be changed by charge and discharge as compared with those of a known positive electrode active material.
    Type: Application
    Filed: May 11, 2018
    Publication date: March 18, 2021
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Mayumi MIKAMI, Aya UCHIDA, Yumiko YONEDA, Yohei MOMMA, Masahiro TAKAHASHI, Teruaki OCHIAI
  • Publication number: 20200152961
    Abstract: To provide a positive electrode active material with which the cycle performance of a secondary battery can be improved and a manufacturing method thereof. When a secondary battery is fabricated using, for a positive electrode, a positive electrode active material obtained by depositing a solid electrolyte on a lithium compound with the use of a graphene compound by spray-drying treatment and volatilizing carbon from the graphene compound by heat treatment, the decomposition of an electrolyte solution in contact with the positive electrode active material can be inhibited, contributing to improvement in the cycle performance of the secondary battery.
    Type: Application
    Filed: April 19, 2018
    Publication date: May 14, 2020
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yohei MOMMA, Mayumi MIKAMI, Aya UCHIDA, Kazuhito MACHIKAWA
  • Publication number: 20200144621
    Abstract: A power storage device with high capacity or high energy density is provided. A highly reliable power storage device is provided. A long-life power storage device is provided. An electrode includes an active material, a first binder, and a second binder. The specific surface area of the active material is S[m2/g]. The weight of the active material, the weight of the first binder, and the weight of the second binder are a, b, and c, respectively. The solution of {(b+c)/(a+b+c)}×100÷S is 0.3 or more. The electrode includes a first film in contact with the active material. The first film preferably includes a region in contact with the active material. The first film preferably includes a region with a thickness of 2 nm or more and 20 nm or less. The first film contains a water-soluble polymer.
    Type: Application
    Filed: December 27, 2019
    Publication date: May 7, 2020
    Inventors: Kai KIMURA, Kazutaka Costellia KURIKI, Teppei OGUNI, Aya UCHIDA (Forme: HITOTSUYANAGI)
  • Patent number: 10529990
    Abstract: A power storage device with high capacity or high energy density is provided. A highly reliable power storage device is provided. A long-life power storage device is provided. An electrode includes an active material, a first binder, and a second binder. The specific surface area of the active material is S [m2/g]. The weight of the active material, the weight of the first binder, and the weight of the second binder are a, b, and c, respectively. The solution of {(b+c)/(a+b+c)}×100÷S is 0.3 or more. The electrode includes a first film in contact with the active material. The first film preferably includes a region in contact with the active material. The first film preferably includes a region with a thickness of 2 nm or more and 20 nm or less. The first film contains a water-soluble polymer.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: January 7, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kai Kimura, Kazutaka Kuriki, Teppei Oguni, Aya Uchida
  • Patent number: 10497979
    Abstract: A power storage device with high capacity is provided. Alternatively, a power storage device with high energy density is provided. Alternatively, a highly reliable power storage device is provided. Alternatively, a long-life power storage device is provided. A power storage device is characterized by comprising a separator, a first electrode, a second electrode, an electrolytic solution, in which the separator is provided between the first electrode and the second electrode, the first electrode includes an active material layer and a current collector, the first electrode includes a pair of coating films between which the current collector is sandwiched, the active material layer includes a region in contact with the current collector, the active material layer includes a region in contact with at least one of the pair of coating films, and the electrolytic solution includes an alkali metal salt and an ionic liquid.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: December 3, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Jun Ishikawa, Kazuhei Narita, Teppei Oguni, Aya Uchida
  • Patent number: 10158108
    Abstract: When cellulose is used as a separator, the cellulose is impregnated with an ionic liquid. Charge and discharge are repeated with this separator touching a surface of a current collector; then, the separator is changed in color. Thus, it is an object to provide a power storage device with a structure in which a side reaction other than a battery reaction, e.g., a change in color of separator, is unlikely to occur. In the power storage device, a separator impregnated with an ionic liquid is not in contact with a surface of a current collector. The separator has a tubular shape, a bag-like shape, or a sheet-like shape. The separator includes cellulose. The power storage device including the ionic liquid is non-volatile and non-flammable. The power storage device can be bent.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: December 18, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kazuhei Narita, Jun Ishikawa, Teppei Oguni, Aya Uchida
  • Patent number: 10147556
    Abstract: A power storage device with high capacity, a power storage device with high energy density, a highly reliable power storage device, and a long-life power storage device are provided. The power storage device includes a positive electrode, a separator, a negative electrode, and an electrolytic solution. The electrolytic solution contains an alkali metal salt and an ionic liquid. The separator is located between the positive electrode and the negative electrode. At least part of the positive electrode overlaps with the negative electrode. At least part of an end portion of the negative electrode is located inside a region between end portions of the positive electrode.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: December 4, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Aya Uchida, Teppei Oguni, Rie Yokoi, Jun Ishikawa
  • Publication number: 20180233780
    Abstract: A power storage device with high capacity is provided. Alternatively, a power storage device with high energy density is provided. Alternatively, a highly reliable power storage device is provided. Alternatively, a long-life power storage device is provided. A power storage device is characterized by comprising a separator, a first electrode, a second electrode, an electrolytic solution, in which the separator is provided between the first electrode and the second electrode, the first electrode includes an active material layer and a current collector, the first electrode includes a pair of coating films between which the current collector is sandwiched, the active material layer includes a region in contact with the current collector, the active material layer includes a region in contact with at least one of the pair of coating films, and the electrolytic solution includes an alkali metal salt and an ionic liquid.
    Type: Application
    Filed: September 30, 2015
    Publication date: August 16, 2018
    Inventors: Jun ISHIKAWA, Kazuhei NARITA, Teppei OGUNI, Aya UCHIDA
  • Publication number: 20170338491
    Abstract: A power storage device with high capacity or high energy density is provided. A highly reliable power storage device is provided. A long-life power storage device is provided. An electrode includes an active material, a first binder, and a second binder. The specific surface area of the active material is S [m2/g]. The weight of the active material, the weight of the first binder, and the weight of the second binder are a, b, and c, respectively. The solution of {(b+c)/(a+b+c)}×100÷S is 0.3 or more. The electrode includes a first film in contact with the active material. The first film preferably includes a region in contact with the active material. The first film preferably includes a region with a thickness of 2 nm or more and 20 nm or less. The first film contains a water-soluble polymer.
    Type: Application
    Filed: August 4, 2017
    Publication date: November 23, 2017
    Inventors: Kai KIMURA, Kazutaka KURIKI, Teppei OGUNI, Aya UCHIDA (Forme: HITOTSUYANAGI)