Patents by Inventor Aydogan Ozcan

Aydogan Ozcan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140120563
    Abstract: An allergy testing system for use with a mobile electronic device having a camera includes a housing that can be attached to the mobile electronic device. First and second light sources within the housing are configured to illuminate, respectively, a test sample and a control sample. A colorimetric assay is performed on the test sample and the control sample. The first light source and the second light source are activated and the camera of the mobile electronic device captures images of transmitted light. The relative intensity of transmitted light is then used by software loaded on the mobile electronic device to determine a relative absorbance value. The relative absorbance value is used, together with a calibration curve, to measure the concentration of a particular allergen within the test sample. Based on the concentration of the allergen the test sample can be labeled as either “positive” or “negative.
    Type: Application
    Filed: October 14, 2013
    Publication date: May 1, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Aydogan Ozcan, Ahmet F. Coskun, Justin Wong
  • Patent number: 8693762
    Abstract: A flow cytometry system includes an inertial particle focusing device including a plurality of substantially parallel microchannels formed in a substrate, each microchannel having a width to height ratio in the range of 2:3 to 1:4, an analyzer disposed adjacent the inertial particle focusing device such that the analyzer is configured to detect a characteristic of particles in the inertial particle focusing device, and a controller connected to the analyzer and configured to direct the detection of the characteristic of the particles.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: April 8, 2014
    Assignee: The Regents of the University of California
    Inventors: Dino Di Carlo, Aydogan Ozcan, Bahram Jalali, Soojung Hur, Henry T. K. Tse
  • Publication number: 20130280752
    Abstract: A system for three dimensional imaging of an object contained within a sample includes an image sensor, a sample holder configured to hold the sample, the sample holder disposed adjacent to the image sensor, and an illumination source comprising partially coherent light. The illumination source is configured to illuminate the sample through at least one of an aperture, fiber-optic cable, or optical waveguide interposed between the illumination source and the sample holder, wherein the illumination source is configured to illuminate the sample through a plurality of different angles.
    Type: Application
    Filed: January 5, 2012
    Publication date: October 24, 2013
    Applicant: The Regents of The University of California
    Inventors: Aydogan Ozcan, Serhan O. Isikman, Waheb Bishara
  • Publication number: 20130258091
    Abstract: A method and system of imaging a moving object within a microfluidic environment includes illuminating a first side of a flow cell configured to carry the moving object within a flow of carrier fluid with an illumination source emitting at least partially coherent light, the at least partially coherent light passing through an aperture prior to illuminating the flow cell. A plurality of lower resolution frame images of the moving object are acquired with an image sensor disposed on an opposing side of the flow cell, wherein the image sensor is angled relative to a direction of flow of the moving object within the carrier fluid. A higher resolution image is reconstructed of the moving object based at least in part on the plurality of lower resolution frame images.
    Type: Application
    Filed: December 13, 2011
    Publication date: October 3, 2013
    Applicant: The Regents of the University of California
    Inventors: Aydogan Ozcan, Waheb Bishara
  • Publication number: 20130203043
    Abstract: A portable rapid diagnostic test reader system includes a mobile phone having a camera and one or more processors contained within the mobile phone and a modular housing configured to mount to the mobile phone. The modular housing including a receptacle configured to receive a sample tray holding a rapid diagnostic test. At least one illumination source is disposed in the modular housing and located on one side of the rapid diagnostic test. An optical demagnifier is disposed in the modular housing interposed between the rapid diagnostic test and the mobile phone camera.
    Type: Application
    Filed: May 31, 2012
    Publication date: August 8, 2013
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Aydogan Ozcan, Onur Mudanyali, Stoyan Dimitrov, Uzair Sikora, Swati Padmanabhan, Isa Navrus
  • Publication number: 20130193544
    Abstract: A lensfree imaging and sensing device includes an image sensor comprising an array of pixels and a substantially optically transparent layer disposed above the image sensor. Nano-sized features that support surface plasmon waves are populated on the substantially optically transparent layer separating the image sensor from the nano-sized features. The nano-sized features may include apertures through a substantially optically opaque layer (e.g., metal layer) or they may include antennas. An illumination source is provided that is configured to illuminate a sample. At least one processor is operatively coupled to the image sensor. Changes to the detected transmission pattern at the image sensor are used to sense conditions at or near the surface containing the nano-sized features. Conditions may include binding events or other changes to the index of refraction occurring near the surface of the device.
    Type: Application
    Filed: October 14, 2011
    Publication date: August 1, 2013
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventor: Aydogan Ozcan
  • Publication number: 20130092821
    Abstract: An imaging device uses a fiber optic faceplate (FOF) with a compressive sampling algorithm for the fluorescent imaging of a sample over an large field-of-view without the need for any lenses or mechanical scanning. The imaging device includes a sample holder configured to hold a sample and a prism or hemispherical glass surface disposed adjacent the sample holder on a side opposite the lower surface of the sample holder. A light source is configured to illuminate the sample via the prism or the hemispherical surface, wherein substantially all of the light is subject to total internal reflection at the lower surface of the sample holder. The FOF is disposed adjacent to the lower surface of the sample holder, the fiber optic array having an input side and an output side. The device includes an imaging sensor array disposed adjacent to the output side of the fiber optic array.
    Type: Application
    Filed: April 25, 2011
    Publication date: April 18, 2013
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Aydogan Ozcan, Ahmet F. Coskun, Ikbal Sencan, Ting-Wei Su
  • Publication number: 20120281899
    Abstract: An apparatus and method process optical coherence tomography (OCT) imaging data from a sample. The method includes using a magnitude spectrum and an estimated phase term of a complex spatial Fourier transform of a complex intermediate function to generate an estimated complex spatial Fourier transform. The method further includes calculating an inverse Fourier transform of the estimated complex spatial Fourier transform and calculating an estimated intermediate function by applying at least one constraint to the inverse Fourier transform. The apparatus includes a partially reflective element configured to reflect a first portion of light and to allow a second portion of light to propagate through the partially reflective element and to reflect from the sample. The apparatus further includes a detector that measures the OCT power spectrum in response to the first and second portions of light.
    Type: Application
    Filed: June 12, 2012
    Publication date: November 8, 2012
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Aydogan Ozcan, Michel J.F. Digonnet, Gordon S. Kino
  • Publication number: 20120248292
    Abstract: A system for imaging objects within a sample includes an image sensor and a sample holder configured to hold the sample, the sample holder disposed adjacent to the image sensor. The system further includes an illumination source configured to scan in two or three dimensions relative to the sensor array and illuminate the sample at a plurality of different locations. The illumination source may include, by way of example, LEDs, laser diodes, or even a screen or display from a portable electronic device. The system includes least one processor configured to reconstruct an image of the sample based on the images obtained from illumination source at the plurality of different scan positions.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 4, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Aydogan Ozcan, Waheb Bishara
  • Publication number: 20120218379
    Abstract: A system for imaging a cytological sample includes a sample holder configured to hold a cytological sample. A spatial filter is disposed at a distance z1 from the sample holder on first side of the sample holder, the spatial filter having an aperture disposed therein configured to allow the passage of illumination. An imaging sensor array is disposed at a distance z2 from the sample holder on a second, opposite side of the sample holder. An illumination source is configured to illuminate the cytological sample through the aperture, the spatial filter being interposed between the illumination source and the sample holder.
    Type: Application
    Filed: October 19, 2010
    Publication date: August 30, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Aydogan Ozcan, Serhan Omer Isikman, Chetin Oztoprak
  • Patent number: 8244086
    Abstract: An optical device and methods of using an optical device are provided. The optical device includes a hollow-core fiber including a first portion and a second portion. The first portion includes a hollow core having a first diameter. The second portion includes a hollow core having a second diameter smaller than the first diameter. The difference between the first diameter and the second diameter is less than 10% of the first diameter.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: August 14, 2012
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Michel J. F. Digonnet, Aydogan Ozcan
  • Patent number: 8219350
    Abstract: An apparatus is provided for measuring a frequency-domain optical coherence tomography power spectrum from a sample. The apparatus includes a partially reflective element configured to be optically coupled to a light source and to the sample. A first portion of light from the light source is configured to be reflected by the partially reflective element. A second portion of light from the light source is configured to propagate through the partially reflective element, to impinge the sample, and to reflect from the sample. The apparatus is configured to receive the first and second portions of light and to measure the frequency-domain optical coherence tomography power spectrum in response to the first portion of light and the second portion of light.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: July 10, 2012
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Aydogan Ozcan, Michel J. F. Digonnet, Gordon S. Kino
  • Publication number: 20120157160
    Abstract: Wide-field fluorescent imaging on a mobile device having a camera is accomplished with a compact, light-weight and inexpensive optical components that are mechanically secured to the mobile device in a removable housing. Battery powered light-emitting diodes (LEDs) contained in the housing pump the sample of interest from the side using butt-coupling, where the pump light is guided within the sample holder to uniformly excite the specimen. The fluorescent emission from the sample is then imaged using an additional lens that is positioned adjacent to the existing lens of the mobile device. A color filter is sufficient to create the dark-field background required for fluorescent imaging, without the need for expensive thin-film interference filters.
    Type: Application
    Filed: December 21, 2011
    Publication date: June 21, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Aydogan Ozcan, Hongying Zhu, Sam Mavandadi
  • Publication number: 20120148141
    Abstract: A compact and light-weight lens-free platform to conduct automated semen analysis is disclosed. The device employs holographic on-chip imaging and does not require any lenses, lasers or other bulky optical components to achieve phase and amplitude imaging of sperm a relatively large field-of-view with an effective numerical aperture of approximately 0.2. A series of digital image frames is obtained of the sample. Digital subtraction of the consecutive lens-free frames, followed by processing of the reconstructed phase images, enables automated quantification of the count, the speed and the dynamic trajectories of motile sperm, while summation of the same frames permits counting of immotile sperm.
    Type: Application
    Filed: December 13, 2011
    Publication date: June 14, 2012
    Inventors: Aydogan Ozcan, Anthony F. Erlinger, Ting-Wei Su
  • Publication number: 20120099803
    Abstract: A method utilizes an optical image processing system. The method includes calculating a product of (i) a measured magnitude of a Fourier transform of a complex transmission function of an object or optical image and (ii) an estimated phase term of the Fourier transform of the complex transmission function. The method further includes calculating an inverse Fourier transform of the product, wherein the inverse Fourier transform is a spatial function. The method further includes calculating an estimated complex transmission function by applying at least one constraint to the inverse Fourier transform.
    Type: Application
    Filed: November 7, 2011
    Publication date: April 26, 2012
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Aydogan Ozcan, Michel J.F. Digonnet, Gordon S. Kino
  • Patent number: 8150644
    Abstract: A method determines a transient response of a sample. The method includes providing a measured magnitude of the Fourier transform of a complex electric field temporal profile of a pulse sequence comprising a first pulse indicative of the transient response of the sample and a second pulse. The method further includes providing an estimated phase term of the Fourier transform of the complex electric field temporal profile of the pulse sequence. The method further includes multiplying the measured magnitude and the estimated phase term to generate an estimated Fourier transform of the complex electric field temporal profile of the pulse sequence. The method further includes calculating an inverse Fourier transform of the estimated Fourier transform, wherein the inverse Fourier transform is a function of time. The method further includes calculating an estimated complex electric field temporal profile of the pulse sequence by applying at least one constraint to the inverse Fourier transform.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: April 3, 2012
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Aydogan Ozcan, Michael J. F. Digonnet, Gordon S. Kino
  • Publication number: 20120063664
    Abstract: A flow cytometry system includes an inertial particle focusing device including a plurality of substantially parallel microchannels formed in a substrate, each microchannel having a width to height ratio in the range of 2:3 to 1:4, an analyzer disposed adjacent the inertial particle focusing device such that the analyzer is configured to detect a characteristic of particles in the inertial particle focusing device, and a controller connected to the analyzer and configured to direct the detection of the characteristic of the particles.
    Type: Application
    Filed: September 13, 2011
    Publication date: March 15, 2012
    Inventors: Dino Di Carlo, Aydogan Ozcan, Bahram Jalali, Soojung Hur, Henry T.K. Tse
  • Publication number: 20110317167
    Abstract: An apparatus is provided for measuring a frequency-domain optical coherence tomography power spectrum from a sample. The apparatus includes a partially reflective element configured to be optically coupled to a light source and to the sample. A first portion of light from the light source is configured to be reflected by the partially reflective element. A second portion of light from the light source is configured to propagate through the partially reflective element, to impinge the sample, and to reflect from the sample. The apparatus is configured to receive the first and second portions of light and to measure the frequency-domain optical coherence tomography power spectrum in response to the first portion of light and the second portion of light.
    Type: Application
    Filed: September 2, 2011
    Publication date: December 29, 2011
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Aydogan Ozcan, Michel J.F. Digonnet, Gordon S. Kino
  • Patent number: 8082117
    Abstract: A method utilizes an optical image processing system. The method includes providing a measured magnitude of the Fourier transform of a complex transmission function of an object or optical image. The method further includes providing an estimated phase term of the Fourier transform of the complex transmission function. The method further includes multiplying the measured magnitude and the estimated phase term to generate an estimated Fourier transform of the complex transmission function. The method further includes calculating an inverse Fourier transform of the estimated Fourier transform, wherein the inverse Fourier transform is a spatial function. The method further includes calculating an estimated complex transmission function by applying at least one constraint to the inverse Fourier transform.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: December 20, 2011
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Aydogan Ozcan, Michel J. F. Digonnet, Gordon S. Kino
  • Publication number: 20110273712
    Abstract: An optical device and methods of using an optical device are provided. The optical device includes a hollow-core fiber including a first portion and a second portion. The first portion includes a hollow core having a first diameter. The second portion includes a hollow core having a second diameter smaller than the first diameter. The difference between the first diameter and the second diameter is less than 10% of the first diameter.
    Type: Application
    Filed: July 21, 2011
    Publication date: November 10, 2011
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Michel J.F. Digonnet, Aydogan Ozcan