Patents by Inventor Ayhan Mutlu

Ayhan Mutlu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11288426
    Abstract: A system receives a circuit description and measures of intrinsic delay, intrinsic delay variation, transition time and transition time variation for each stage and determines stage delay variation of each stage. The system receives a circuit description and derate factors and determines an intrinsic delay standard deviation and a correlation coefficient. The system determines a stage delay variation of each stage based on the determined factors. The system receives parameters describing an asymmetric distribution of delay values and generates a normal distribution of delay values. The system receives measures of nominal transition time at an output and input of a wire, and transition time variation at the input of the wire and determines a transition time variation at the output of the wire. The system receives measures of an Elmore delay and a nominal delay of the wire and determines a delay variation at the output of the wire.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: March 29, 2022
    Assignee: Synopsys, Inc.
    Inventors: Duc Huynh, Jiayong Le, Ayhan Mutlu, Peivand Tehrani
  • Publication number: 20200410151
    Abstract: A system receives a circuit description and measures of intrinsic delay, intrinsic delay variation, transition time and transition time variation for each stage and determines stage delay variation of each stage. The system receives a circuit description and derate factors and determines an intrinsic delay standard deviation and a correlation coefficient. The system determines a stage delay variation of each stage based on the determined factors. The system receives parameters describing an asymmetric distribution of delay values and generates a normal distribution of delay values. The system receives measures of nominal transition time at an output and input of a wire, and transition time variation at the input of the wire and determines a transition time variation at the output of the wire. The system receives measures of an Elmore delay and a nominal delay of the wire and determines a delay variation at the output of the wire.
    Type: Application
    Filed: September 14, 2020
    Publication date: December 31, 2020
    Inventors: Duc Huynh, Jiayong Le, Ayhan Mutlu, Peivand Tehrani
  • Patent number: 10783301
    Abstract: A system receives a circuit description and measures of intrinsic delay, intrinsic delay variation, transition time and transition time variation for each stage and determines stage delay variation of each stage. The system receives a circuit description and derate factors and determines an intrinsic delay standard deviation and a correlation coefficient. The system determines a stage delay variation of each stage based on the determined factors. The system receives parameters describing an asymmetric distribution of delay values and generates a normal distribution of delay values. The system receives measures of nominal transition time at an output and input of a wire, and transition time variation at the input of the wire and determines a transition time variation at the output of the wire. The system receives measures of an Elmore delay and a nominal delay of the wire and determines a delay variation at the output of the wire.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: September 22, 2020
    Assignee: Synopsys, Inc.
    Inventors: Duc Huynh, Jiayong Le, Ayhan Mutlu, Peivand Tehrani
  • Publication number: 20190197212
    Abstract: A system receives a circuit description and measures of intrinsic delay, intrinsic delay variation, transition time and transition time variation for each stage and determines stage delay variation of each stage. The system receives a circuit description and derate factors and determines an intrinsic delay standard deviation and a correlation coefficient. The system determines a stage delay variation of each stage based on the determined factors. The system receives parameters describing an asymmetric distribution of delay values and generates a normal distribution of delay values. The system receives measures of nominal transition time at an output and input of a wire, and transition time variation at the input of the wire and determines a transition time variation at the output of the wire. The system receives measures of an Elmore delay and a nominal delay of the wire and determines a delay variation at the output of the wire.
    Type: Application
    Filed: March 5, 2019
    Publication date: June 27, 2019
    Inventors: Duc Huynh, Jiayong Le, Ayhan Mutlu, Peivand Tehrani
  • Patent number: 10255395
    Abstract: A system receives a circuit description and measures of intrinsic delay, intrinsic delay variation, transition time and transition time variation for each stage and determines stage delay variation of each stage. The system receives a circuit description and derate factors and determines an intrinsic delay standard deviation and a correlation coefficient. The system determines a stage delay variation of each stage based on the determined factors. The system receives parameters describing an asymmetric distribution of delay values and generates a normal distribution of delay values. The system receives measures of nominal transition time at an output and input of a wire, and transition time variation at the input of the wire and determines a transition time variation at the output of the wire. The system receives measures of an Elmore delay and a nominal delay of the wire and determines a delay variation at the output of the wire.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: April 9, 2019
    Assignee: Synopsys, Inc.
    Inventors: Duc Huynh, Jiayong Le, Ayhan Mutlu, Peivand Tehrani
  • Publication number: 20170262569
    Abstract: A system receives a circuit description and measures of intrinsic delay, intrinsic delay variation, transition time and transition time variation for each stage and determines stage delay variation of each stage. The system receives a circuit description and derate factors and determines an intrinsic delay standard deviation and a correlation coefficient. The system determines a stage delay variation of each stage based on the determined factors. The system receives parameters describing an asymmetric distribution of delay values and generates a normal distribution of delay values. The system receives measures of nominal transition time at an output and input of a wire, and transition time variation at the input of the wire and determines a transition time variation at the output of the wire. The system receives measures of an Elmore delay and a nominal delay of the wire and determines a delay variation at the output of the wire.
    Type: Application
    Filed: March 11, 2016
    Publication date: September 14, 2017
    Inventors: Duc Huynh, Jiayong Le, Ayhan Mutlu, Peivand Tehrani
  • Patent number: 8843864
    Abstract: The invention provides a method for performing statistical static timing analysis using a novel on-chip variation model, referred to as Sensitivity-based Complex Statistical On-Chip Variation (SCS-OCV). SCS-OCV introduces complex variation concept to resolve the blocking technical issue of combining local random variations, enabling accurate calculation of statistical variations with correlations, such as common-path pessimism removal (CPPR). SCS-OCV proposes practical statistical min/max operations for random variations that can guarantee pessimism at nominal and targeted N-sigma corner, and extends the method to handle complex variations, enabling graph-based full arrival/required time propagation under variable compaction. SCS-OCV provides a statistical corner evaluation method for complex random variables that can transform vector-based parametric timing information to the single-value corner-based timing report, and based on the method derives equations to bridge POCV/SSTA with LOCV.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: September 23, 2014
    Assignee: Synopsys, Inc.
    Inventors: Jiayong Le, Mustafa Celik, Guy Maor, Ayhan Mutlu
  • Publication number: 20140047403
    Abstract: The invention provides a method for performing statistical static timing analysis using a novel on-chip variation model, referred to as Sensitivity-based Complex Statistical On-Chip Variation (SCS-OCV). SCS-OCV introduces complex variation concept to resolve the blocking technical issue of combining local random variations, enabling accurate calculation of statistical variations with correlations, such as common-path pessimism removal (CPPR). SCS-OCV proposes practical statistical min/max operations for random variations that can guarantee pessimism at nominal and targeted N-sigma corner, and extends the method to handle complex variations, enabling graph-based full arrival/required time propagation under variable compaction. SCS-OCV provides a statistical corner evaluation method for complex random variables that can transform vector-based parametric timing information to the single-value corner-based timing report, and based on the method derives equations to bridge POCV/SSTA with LOCV.
    Type: Application
    Filed: August 16, 2013
    Publication date: February 13, 2014
    Applicant: Synopsys, Inc.
    Inventors: Jiayong Le, Mustafa Celik, Guy Maor, Ayhan Mutlu
  • Patent number: 8555222
    Abstract: The invention provides a method for performing statistical static timing analysis using a novel on-chip variation model, referred to as Sensitivity-based Complex Statistical On-Chip Variation (SCS-OCV). SCS-OCV introduces complex variation concept to resolve the blocking technical issue of combining local random variations, enabling accurate calculation of statistical variations with correlations, such as common-path pessimism removal (CPPR). SCS-OCV proposes practical statistical min/max operations for random variations that can guarantee pessimism at nominal and targeted N-sigma corner, and extends the method to handle complex variations, enabling graph-based full arrival/required time propagation under variable compaction. SCS-OCV provides a statistical corner evaluation method for complex random variables that can transform vector-based parametric timing information to the single-value corner-based timing report, and based on the method derives equations to bridge POCV/SSTA with LOCV.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: October 8, 2013
    Assignee: Synopsys, Inc.
    Inventors: Jiayong Le, Mustafa Celik, Guy Maor, Ayhan Mutlu
  • Publication number: 20130179851
    Abstract: The invention provides a method for performing statistical static timing analysis using a novel on-chip variation model, referred to as Sensitivity-based Complex Statistical On-Chip Variation (SCS-OCV). SCS-OCV introduces complex variation concept to resolve the blocking technical issue of combining local random variations, enabling accurate calculation of statistical variations with correlations, such as common-path pessimism removal (CPPR). SCS-OCV proposes practical statistical min/max operations for random variations that can guarantee pessimism at nominal and targeted N-sigma corner, and extends the method to handle complex variations, enabling graph-based full arrival/required time propagation under variable compaction. SCS-OCV provides a statistical corner evaluation method for complex random variables that can transform vector-based parametric timing information to the single-value corner-based timing report, and based on the method derives equations to bridge POCV/SSTA with LOCV.
    Type: Application
    Filed: March 4, 2013
    Publication date: July 11, 2013
    Inventors: Jiayong Le, Mustafa Celik, Guy Maor, Ayhan Mutlu
  • Patent number: 8407640
    Abstract: The invention provides a method for performing statistical static timing analysis using a novel on-chip variation model, referred to as Sensitivity-based Complex Statistical On-Chip Variation (SCS-OCV). SCS-OCV introduces complex variation concept to resolve the blocking technical issue of combining local random variations, enabling accurate calculation of statistical variations with correlations, such as common-path pessimism removal (CPPR). SCS-OCV proposes practical statistical min/max operations for random variations that can guarantee pessimism at nominal and targeted N-sigma corner, and extends the method to handle complex variations, enabling graph-based full arrival/required time propagation under variable compaction. SCS-OCV provides a statistical corner evaluation method for complex random variables that can transform vector-based parametric timing information to the single-value corner-based timing report, and based on the method derives equations to bridge POCV/SSTA with LOCV.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: March 26, 2013
    Assignee: Synopsys, Inc.
    Inventors: Jiayong Le, Mustafa Celik, Guy Maor, Ayhan Mutlu
  • Publication number: 20120072880
    Abstract: The invention provides a method for performing statistical static timing analysis using a novel on-chip variation model, referred to as Sensitivity-based Complex Statistical On-Chip Variation (SCS-OCV). SCS-OCV introduces complex variation concept to resolve the blocking technical issue of combining local random variations, enabling accurate calculation of statistical variations with correlations, such as common-path pessimism removal (CPPR). SCS-OCV proposes practical statistical min/max operations for random variations that can guarantee pessimism at nominal and targeted N-sigma corner, and extends the method to handle complex variations, enabling graph-based full arrival/required time propagation under variable compaction. SCS-OCV provides a statistical corner evaluation method for complex random variables that can transform vector-based parametric timing information to the single-value corner-based timing report, and based on the method derives equations to bridge POCV/SSTA with LOCV.
    Type: Application
    Filed: August 23, 2011
    Publication date: March 22, 2012
    Inventors: Jiayong Le, Mustafa Celik, Guy Maor, Ayhan Mutlu