Patents by Inventor Aykut Aydin
Aykut Aydin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12142480Abstract: Exemplary methods of semiconductor processing may include providing a silicon-containing precursor to a processing region of a semiconductor processing chamber. A substrate may be disposed within the processing region of the semiconductor processing chamber. The methods may include depositing a silicon-containing material on the substrate. The silicon-containing material may extend within the one or more recessed features along the substrate and a seam or void may be defined by the silicon-containing material within at least one of the one or more recessed features along the substrate. The methods may also include treating the silicon-containing material with a hydrogen-containing gas, such as plasma effluents of the hydrogen-containing gas, which may cause a size of the seam or void to be reduced.Type: GrantFiled: August 13, 2021Date of Patent: November 12, 2024Assignee: Applied Materials, Inc.Inventors: Qinghua Zhao, Rui Cheng, Ruiyun Huang, Dong Hyung Lee, Aykut Aydin, Karthik Janakiraman
-
Publication number: 20240339316Abstract: Embodiments of the present disclosure generally relate to processes for forming silicon- and boron-containing films for use in, e.g., spacer-defined patterning applications. In an embodiment, a spacer-defined patterning process is provided. The process includes disposing a substrate in a processing volume of a processing chamber, the substrate having patterned features formed thereon, and flowing a first process gas into the processing volume, the first process gas comprising a silicon-containing species, the silicon-containing species having a higher molecular weight than SiH4. The process further includes flowing a second process gas into the processing volume, the second process gas comprising a boron-containing species, and depositing, under deposition conditions, a conformal film on the patterned features, the conformal film comprising silicon and boron.Type: ApplicationFiled: June 18, 2024Publication date: October 10, 2024Inventors: Aykut AYDIN, Rui CHENG, Karthik JANAKIRAMAN, Abhijit Basu MALLICK, Takehito KOSHIZAWA, Bo QI
-
Patent number: 12077852Abstract: Exemplary deposition methods may include delivering a boron-containing precursor to a processing region of a semiconductor processing chamber. The methods may include delivering a dopant-containing precursor with the boron-containing precursor. The dopant-containing precursor may include a metal. The methods may include forming a plasma of all precursors within the processing region of the semiconductor processing chamber. The methods may include depositing a doped-boron material on a substrate disposed within the processing region of the semiconductor processing chamber. The doped-boron material may include greater than or about 80 at. % of boron in the doped-boron material.Type: GrantFiled: April 26, 2021Date of Patent: September 3, 2024Assignee: Applied Materials, Inc.Inventors: Aykut Aydin, Rui Cheng, Karthik Janakiraman
-
Publication number: 20240266171Abstract: Embodiments of the present technology include semiconductor processing methods to make boron-and-silicon-containing layers that have a changing atomic ratio of boron-to-silicon. The methods may include flowing a silicon-containing precursor into a substrate processing region of a semiconductor processing chamber, and also flowing a boron-containing precursor and molecular hydrogen (H2) into the substrate processing region of the semiconductor processing chamber. The boron-containing precursor and the H2 may be flowed at a boron-to-hydrogen flow rate ratio. The flow rate of the boron-containing precursor and the H2 may be increased while the boron-to-hydrogen flow rate ratio remains constant during the flow rate increase. The boron-and-silicon-containing layer may be deposited on a substrate, and may be characterized by a continuously increasing ratio of boron-to-silicon from a first surface in contact with the substrate to a second surface of the boron-and-silicon-containing layer furthest from the substrate.Type: ApplicationFiled: March 15, 2024Publication date: August 8, 2024Applicant: Applied Materials, Inc.Inventors: Yi Yang, Krishna Nittala, Rui Cheng, Karthik Janakiraman, Diwakar Kedlaya, Zubin Huang, Aykut Aydin
-
Publication number: 20240266185Abstract: Exemplary semiconductor processing methods may include depositing a metal-doped boron-containing material on a substrate disposed within a processing region of a semiconductor processing chamber. The metal-doped boron-containing material may include a metal dopant comprising tungsten. The substrate may include a silicon-containing material. The methods may include depositing one or more additional materials over the metal-doped boron-containing material. The one or more additional materials may include a patterned photoresist material. The methods may include transferring a pattern from the patterned photoresist material to the metal-doped boron-containing material. The methods may include etching the metal-doped boron-containing material with a chlorine-containing precursor. The methods may include etching the silicon-containing material with a fluorine-containing precursor. The metal dopant may enhance an etch rate of the silicon-containing material.Type: ApplicationFiled: February 7, 2023Publication date: August 8, 2024Applicant: Applied Materials, Inc.Inventors: Han Wang, Yu Yang, Jing Zhang, Aykut Aydin, Guoqing Li, Guangyan Zhong, Rui Cheng, Gene H. Lee, Srinivas Guggilla, Sinae Heo, Eswaranand Venkatasubramanian, Abhijit Basu Mallick, Karthik Janakiraman
-
Patent number: 12033848Abstract: Embodiments of the present disclosure generally relate to processes for forming silicon- and boron-containing films for use in, e.g., spacer-defined patterning applications. In an embodiment, a spacer-defined patterning process is provided. The process includes disposing a substrate in a processing volume of a processing chamber, the substrate having patterned features formed thereon, and flowing a first process gas into the processing volume, the first process gas comprising a silicon-containing species, the silicon-containing species having a higher molecular weight than SiH4. The process further includes flowing a second process gas into the processing volume, the second process gas comprising a boron-containing species, and depositing, under deposition conditions, a conformal film on the patterned features, the conformal film comprising silicon and boron.Type: GrantFiled: June 18, 2021Date of Patent: July 9, 2024Assignee: Applied Materials, Inc.Inventors: Aykut Aydin, Rui Cheng, Karthik Janakiraman, Abhijit B. Mallick, Takehito Koshizawa, Bo Qi
-
Patent number: 11961739Abstract: Embodiments of the present technology include semiconductor processing methods to make boron-and-silicon-containing layers that have a changing atomic ratio of boron-to-silicon. The methods may include flowing a silicon-containing precursor into a substrate processing region of a semiconductor processing chamber, and also flowing a boron-containing precursor and molecular hydrogen (H2) into the substrate processing region of the semiconductor processing chamber. The boron-containing precursor and the H2 may be flowed at a boron-to-hydrogen flow rate ratio. The flow rate of the boron-containing precursor and the H2 may be increased while the boron-to-hydrogen flow rate ratio remains constant during the flow rate increase. The boron-and-silicon-containing layer may be deposited on a substrate, and may be characterized by a continuously increasing ratio of boron-to-silicon from a first surface in contact with the substrate to a second surface of the boron-and-silicon-containing layer furthest from the substrate.Type: GrantFiled: October 5, 2020Date of Patent: April 16, 2024Assignee: Applied Materials, Inc.Inventors: Yi Yang, Krishna Nittala, Rui Cheng, Karthik Janakiraman, Diwakar Kedlaya, Zubin Huang, Aykut Aydin
-
Patent number: 11939674Abstract: Exemplary deposition methods may include delivering a silicon-containing precursor and a boron-containing precursor to a processing region of a semiconductor processing chamber. The methods may include providing a hydrogen-containing precursor with the silicon-containing precursor and the boron-containing precursor. A flow rate ratio of the hydrogen-containing precursor to either of the silicon-containing precursor or the boron-containing precursor is greater than or about 1:1. The methods may include forming a plasma of all precursors within the processing region of a semiconductor processing chamber. The methods may include depositing a silicon-and-boron material on a substrate disposed within the processing region of the semiconductor processing chamber.Type: GrantFiled: March 2, 2023Date of Patent: March 26, 2024Assignee: Applied Materials, Inc.Inventors: Yi Yang, Krishna Nittala, Karthik Janakiraman, Aykut Aydin, Diwakar Kedlaya
-
Patent number: 11827514Abstract: Deposition methods may prevent or reduce crystallization of silicon in a deposited amorphous silicon film that may occur after annealing at high temperatures. The crystallization of silicon may be prevented by doping the silicon with an element. The element may be boron, carbon, or phosphorous. Doping above a certain concentration for the element prevents substantial crystallization at high temperatures and for durations at or greater than 30 minutes. Methods and devices are described.Type: GrantFiled: October 27, 2020Date of Patent: November 28, 2023Assignee: Applied Materials, Inc.Inventors: Aykut Aydin, Krishna Nittala, Karthik Janakiraman, Yi Yang, Gautam K. Hemani
-
Publication number: 20230203652Abstract: Exemplary deposition methods may include delivering a silicon-containing precursor and a boron-containing precursor to a processing region of a semiconductor processing chamber. The methods may include providing a hydrogen-containing precursor with the silicon-containing precursor and the boron-containing precursor. A flow rate ratio of the hydrogen-containing precursor to either of the silicon-containing precursor or the boron-containing precursor is greater than or about 1:1. The methods may include forming a plasma of all precursors within the processing region of a semiconductor processing chamber. The methods may include depositing a silicon-and-boron material on a substrate disposed within the processing region of the semiconductor processing chamber.Type: ApplicationFiled: March 2, 2023Publication date: June 29, 2023Applicant: Applied Materials, Inc.Inventors: Yi Yang, Krishna Nittala, Karthik Janakiraman, Aykut Aydin, Diwakar Kedlaya
-
Patent number: 11676813Abstract: Exemplary deposition methods may include delivering a silicon-containing precursor and a boron-containing precursor to a processing region of a semiconductor processing chamber. The methods may include delivering a dopant-containing precursor with the silicon-containing precursor and the boron-containing precursor. The dopant-containing precursor may include one or more of carbon, nitrogen, oxygen, or sulfur. The methods may include forming a plasma of all precursors within the processing region of the semiconductor processing chamber. The methods may include depositing a silicon-and-boron material on a substrate disposed within the processing region of the semiconductor processing chamber. The silicon-and-boron material may include greater than or about 1 at. % of a dopant from the dopant-containing precursor.Type: GrantFiled: September 18, 2020Date of Patent: June 13, 2023Assignee: Applied Materials, Inc.Inventors: Aykut Aydin, Rui Cheng, Yi Yang, Krishna Nittala, Karthik Janakiraman, Bo Qi, Abhijit Basu Mallick
-
Patent number: 11640905Abstract: Exemplary deposition methods may include flowing a silicon-containing precursor into a processing region of a semiconductor processing chamber. The method may include striking a plasma in the processing region between a faceplate and a pedestal of the semiconductor processing chamber. The pedestal may support a substrate including a patterned photoresist. The method may include maintaining a temperature of the substrate less than or about 200° C. The method may also include depositing a silicon-containing film along the patterned photoresist.Type: GrantFiled: December 17, 2020Date of Patent: May 2, 2023Assignee: Applied Materials, Inc.Inventors: Aykut Aydin, Rui Cheng, Karthik Janakiraman
-
Publication number: 20230118964Abstract: A target concentration profile for a film to be deposited on a surface of a substrate during a deposition process for the substrate at a process chamber of a manufacturing system is identified. Data of the target concentration profile is processed using a model. The model outputs a set of deposition process settings that corresponds to the target concentration profile. One or more operations of the deposition process are performed in accordance with the set of deposition process settings.Type: ApplicationFiled: December 19, 2022Publication date: April 20, 2023Inventors: Anton V. Baryshnikov, Aykut Aydin, Zubin Huang, Rui Cheng, Yi Yang, Diwakar Kedlaya, Venkatanarayana Shankaramurthy, Krishna Nittala, Karthik Janakiraman
-
Patent number: 11618949Abstract: Exemplary deposition methods may include delivering a silicon-containing precursor and a boron-containing precursor to a processing region of a semiconductor processing chamber. The methods may include providing a hydrogen-containing precursor with the silicon-containing precursor and the boron-containing precursor. A flow rate ratio of the hydrogen-containing precursor to either of the silicon-containing precursor or the boron-containing precursor is greater than or about 2:1. The methods may include forming a plasma of all precursors within the processing region of a semiconductor processing chamber. The methods may include depositing a silicon-and-boron material on a substrate disposed within the processing region of the semiconductor processing chamber.Type: GrantFiled: November 2, 2020Date of Patent: April 4, 2023Assignee: Applied Materials, Inc.Inventors: Yi Yang, Krishna Nittala, Karthik Janakiraman, Aykut Aydin, Diwakar Kedlaya
-
Publication number: 20230050255Abstract: Exemplary methods of semiconductor processing may include providing a silicon-containing precursor to a processing region of a semiconductor processing chamber. A substrate may be disposed within the processing region of the semiconductor processing chamber. The methods may include depositing a silicon-containing material on the substrate. The silicon-containing material may extend within the one or more recessed features along the substrate and a seam or void may be defined by the silicon-containing material within at least one of the one or more recessed features along the substrate. The methods may also include treating the silicon-containing material with a hydrogen-containing gas, such as plasma effluents of the hydrogen-containing gas, which may cause a size of the seam or void to be reduced.Type: ApplicationFiled: August 13, 2021Publication date: February 16, 2023Applicant: Applied Materials, Inc.Inventors: Qinghua Zhao, Rui Cheng, Ruiyun Huang, Dong Hyung Lee, Aykut Aydin, Karthik Janakiraman
-
Publication number: 20220406594Abstract: Embodiments of the present disclosure generally relate to processes for forming silicon- and boron-containing films for use in, e.g., spacer-defined patterning applications. In an embodiment, a spacer-defined patterning process is provided. The process includes disposing a substrate in a processing volume of a processing chamber, the substrate having patterned features formed thereon, and flowing a first process gas into the processing volume, the first process gas comprising a silicon-containing species, the silicon-containing species having a higher molecular weight than SiH4. The process further includes flowing a second process gas into the processing volume, the second process gas comprising a boron-containing species, and depositing, under deposition conditions, a conformal film on the patterned features, the conformal film comprising silicon and boron.Type: ApplicationFiled: June 18, 2021Publication date: December 22, 2022Inventors: Aykut AYDIN, Rui CHENG, Karthik JANAKIRAMAN, Abhijit B. MALLICK, Takehito KOSHIZAWA, Bo QI
-
Patent number: 11532525Abstract: Methods and systems for controlling concentration profiles of deposited films using machine learning are provided. Data associated with a target concentration profile for a film to be deposited on a surface of a substrate during a deposition process for the substrate is provided as input to a trained machine learning model. One or more outputs of the trained machine learning model are obtained. Process recipe data identifying one or more sets of deposition process settings is determined from the one or more outputs. For each set of deposition process setting, an indication of a level of confidence that a respective set of deposition process settings corresponds to the target concentration profile for the film to be deposited on the substrate is also determined.Type: GrantFiled: March 3, 2021Date of Patent: December 20, 2022Assignee: APPLIED MATERIALS, INC.Inventors: Anton V Baryshnikov, Aykut Aydin, Zubin Huang, Rui Cheng, Yi Yang, Diwakar Kedlaya, Venkatanarayana Shankaramurthy, Krishna Nittala, Karthik Janakiraman
-
Publication number: 20220341034Abstract: Exemplary deposition methods may include delivering a boron-containing precursor to a processing region of a semiconductor processing chamber. The methods may include delivering a dopant-containing precursor with the boron-containing precursor. The dopant-containing precursor may include a metal. The methods may include forming a plasma of all precursors within the processing region of the semiconductor processing chamber. The methods may include depositing a doped-boron material on a substrate disposed within the processing region of the semiconductor processing chamber. The doped-boron material may include greater than or about 80 at. % of boron in the doped-boron material.Type: ApplicationFiled: April 26, 2021Publication date: October 27, 2022Applicant: Applied Materials, Inc.Inventors: Aykut Aydin, Rui Cheng, Karthik Janakiraman
-
Publication number: 20220285232Abstract: Methods and systems for controlling concentration profiles of deposited films using machine learning are provided. Data associated with a target concentration profile for a film to be deposited on a surface of a substrate during a deposition process for the substrate is provided as input to a trained machine learning model. One or more outputs of the trained machine learning model are obtained. Process recipe data identifying one or more sets of deposition process settings is determined from the one or more outputs. For each set of deposition process setting, an indication of a level of confidence that a respective set of deposition process settings corresponds to the target concentration profile for the film to be deposited on the substrate is also determined.Type: ApplicationFiled: March 3, 2021Publication date: September 8, 2022Inventors: Anton V. Baryshnikov, Aykut Aydin, Zubin Huang, Rui Cheng, Yi Yang, Diwakar Kedlaya, Venkatanarayana Shankaramurthy, Krishna Nittala, Karthik Janakiraman
-
Publication number: 20220238331Abstract: Methods for gap filling features of a substrate surface are described. Each of the features extends a distance into the substrate from the substrate surface and have a bottom and at least one sidewall. The methods include depositing a non-conformal film in the feature of the substrate surface with a plurality of high-frequency ratio-frequency (HFRF) pulses. The non-conformal film has a greater thickness on the bottom of the features than on the at least one sidewall. The deposited film is substantially etched from the sidewalls of the feature. The deposition and etch processes are repeated to fill the features.Type: ApplicationFiled: January 25, 2021Publication date: July 28, 2022Applicant: Applied Materials, Inc.Inventors: Aykut Aydin, Rui Cheng, Shishi Jiang, Karthik Janakiraman