Patents by Inventor Ayumu Miyajima

Ayumu Miyajima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9278676
    Abstract: According to the present invention, limited electric power is consumed so as to achieve long-lasting use of electric power during brake control with the use of an auxiliary power supply source when there is a malfunction of a vehicle power supply source. In addition, a brake control device for ensuring responsiveness at the beginning of braking or when emergency braking is necessary is provided. The brake control device of the present invention is a brake control device for detecting electric signals generated depending on the degree of brake-pedal operation and calculating the driver's demanded braking force based on the electric signals so as to generate the demanded braking force, which comprises an auxiliary power supply source for supplying electric power to the brake control device when there is a malfunction of a vehicle power supply source and controls braking depending on the charged capacity of the auxiliary power supply source.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: March 8, 2016
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Kimio Nishino, Toshiyuki Innami, Norikazu Matsuzaki, Masayuki Kikawa, Ayumu Miyajima, Toshiyuki Ajima
  • Patent number: 8833869
    Abstract: A brake system which can secure quietness in a passenger compartment is provided. A vehicle brake system 1 includes a brake assist device 2 which boosts a pressing force on a brake pedal 5 by drive of a motor 31, and an assist control unit 6 which controls the motor 31. The assist control unit 6 changes responsiveness of the motor 31 in accordance with a vehicle speed, and sets a dead zone amount and a filtering value to large values in a region with a low vehicle speed. Thereby, responsiveness of a boosting operation of the motor 31 to the operation of the brake pedal is made low, and a rotational variation and a vibration are prevented from occurring to the motor 31 by a minute variation of a detection signal of a stroke sensor 14 during low-speed traveling or stoppage of traveling.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: September 16, 2014
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Norikazu Matsuzaki, Toshiyuki Innami, Kimio Nishino, Ayumu Miyajima, Toshiyuki Ajima, Masayuki Kikawa
  • Publication number: 20140229020
    Abstract: Higher-order vibration is controlled in an event that an impact load such as an aircraft impact is applied to a nuclear plant. A higher-order vibration control device 1 is installed in a nuclear plant having a reactor containment vessel and a nuclear reactor building 3. The higher-order vibration control device 1 includes an impactor 1a, a housing 1b which receives the reaction force of the impactor 1a, and a locking mechanism 2. The impactor 1a is installed on a floor 31 of the nuclear plant so as to roll in a horizontal direction with respect to the floor 31. The housing 1b encloses the impactor 1a and guides rolling of the impactor 1a. The locking mechanism 2 restrains rolling of the impactor 1a. In the event that a flying object may possibly impact the nuclear plant, the locking of the locking mechanism 2 is released.
    Type: Application
    Filed: January 29, 2014
    Publication date: August 14, 2014
    Applicant: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Ayumu MIYAJIMA, Hirokuni ISHIGAKI, Shohei ONITSUKA, Hidenori TANAKA
  • Patent number: 8672808
    Abstract: Provided is a brake control apparatus for a vehicle which detects an amount of brake-pedal operation by means of an electric signal, and then calculates a braking force demanded by a driver from the electric signal, and thereby generates the demanded braking force. A control mode for a braking force is switched from a normal control mode to a stationary-vehicle control mode, if a determination that the vehicle is in a stationary state is followed by another determination that an electric signal corresponding to an actual braking force exceeds a command value for a stationary-vehicle braking force while the vehicle is in the stationary state. The control mode for a braking force is switched from the stationary-vehicle control mode to the normal control mode, if it is determined that the demanded braking force becomes smaller than the command value for the stationary-vehicle braking force.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: March 18, 2014
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Kimio Nishino, Toshiyuki Innami, Norikazu Matsuzaki, Shingo Nasu, Ayumu Miyajima
  • Patent number: 8538653
    Abstract: Disclosed is a brake control apparatus which includes a brake booster for augmenting deceleration, and which addresses the problem in conventional brake control apparatuses that deceleration and pedal reaction force depend on driver brake pedal input, and thus the pedal response and the ride comfort from the feeling of deceleration are affected by the manner in which the brake pedal is actuated by the driver. The brake control apparatus comprises a pedal reaction force generation unit for generating a pedal reaction force on the brake pedal, and a brake control unit for controlling the brake force in such a way as to suppress driver brake input fluctuations, wherein the pedal reaction force generation unit suppresses pedal reaction force fluctuations in accordance with specific deceleration and pedal reaction force characteristics.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: September 17, 2013
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Ayumu Miyajima, Masatsugu Arai, Toshiyuki Innami, Kimio Nishino, Norikazu Matsuzaki, Masayuki Kikawa, Makoto Yamakado
  • Publication number: 20110316329
    Abstract: According to the present invention, limited electric power is consumed so as to achieve long-lasting use of electric power during brake control with the use of an auxiliary power supply source when there is a malfunction of a vehicle power supply source. In addition, a brake control device for ensuring responsivenss at the beginning of braking or when emergency braking is necessary is provided. The brake control device of the present invention is a brake control device for detecting electric signals generated depending on the degree of brake-pedal operation and calculating the driver's demanded braking force based on the electric signals so as to generate the demanded braking force, which comprises an auxiliary power supply source for supplying electric power to the brake control device when there is a malfunction of a vehicle power supply source and controls braking deppending on the charged capacity of the auxiliary power supply source.
    Type: Application
    Filed: February 25, 2010
    Publication date: December 29, 2011
    Applicant: Hitachi Automotive Systems, Ltd.
    Inventors: Kimio Nishino, Toshiyuki Innami, Norikazu Matsuzaki, Masayuki Kikawa, Ayumu Miyajima, Toshiyuki Ajima
  • Publication number: 20110202250
    Abstract: Disclosed is a brake control apparatus which includes a brake booster for augmenting deceleration, and which addresses the problem in conventional brake control apparatuses that deceleration and pedal reaction force depend on driver brake pedal input, and thus the pedal response and the ride comfort from the feeling of deceleration are affected by the manner in which the brake pedal is actuated by the driver. The brake control apparatus comprises a pedal reaction force generation unit for generating a pedal reaction force on the brake pedal, and a brake control unit for controlling the brake force in such a way as to suppress driver brake input fluctuations, wherein the pedal reaction force generation unit suppresses pedal reaction force fluctuations in accordance with specific deceleration and pedal reaction force characteristics.
    Type: Application
    Filed: October 9, 2009
    Publication date: August 18, 2011
    Inventors: Ayumu Miyajima, Masatsugu Arai, Toshiyuki Innami, Kimio Nishino, Norikazu Matsuzaki, Masayuki Kikawa, Makoto Yamakado
  • Publication number: 20110066345
    Abstract: Fluctuations in a braking force and a deceleration during regenerative cooperative control are suppressed. A brake system includes a master pressure generating device 200, a wheel pressure generating device 300, and a regenerative braking device 18 that operate brake calipers 21a to 21d of respective brakes, and a brake control device 100 that control the actuators 200, 300, and 18. The brake control device 100 includes a braking force calculating unit 111 that determines a frictional braking force outputted at the brake calipers 21a to 21d and a regenerative braking force outputted by the regenerative braking device 18, and a communication control unit 112 that outputs braking force signals corresponding to the respective braking forces to the respective actuators 200, 300, and 18. The brake control device 100 controls the braking forces based on a pedal reaction force and a displacement amount of a piston that pressurizes a master cylinder.
    Type: Application
    Filed: May 25, 2009
    Publication date: March 17, 2011
    Applicant: Hitachi Automotive Systems, Ltd.
    Inventors: Shingo Nasu, Ayumu Miyajima, Toshiyuki Innami, Kimio Nishino, Kentaro Ueno
  • Publication number: 20100253137
    Abstract: A brake system which can secure quietness in a passenger compartment is provided. A vehicle brake system 1 includes a brake assist device 2 which boosts a pressing force on a brake pedal 5 by drive of a motor 31, and an assist control unit 6 which controls the motor 31. The assist control unit 6 changes responsiveness of the motor 31 in accordance with a vehicle speed, and sets a dead zone amount and a filtering value to large values in a region with a low vehicle speed. Thereby, responsiveness of a boosting operation of the motor 31 to the operation of the brake pedal is made low, and a rotational variation and a vibration are prevented from occurring to the motor 31 by a minute variation of a detection signal of a stroke sensor 14 during low-speed traveling or stoppage of traveling.
    Type: Application
    Filed: February 18, 2010
    Publication date: October 7, 2010
    Applicant: Hitachi Automotive Systems, Ltd.
    Inventors: Norikazu MATSUZAKI, Toshiyuki Innami, Kimio Nishino, Ayumu Miyajima, Toshiyuki Ajima, Masayuki Kikawa
  • Patent number: 7703561
    Abstract: In order to reduce a steering torque during stoppage of a vehicle, according to the invention, opposite drive torques in normal and reverse directions are applied to a left rear wheel and a right rear wheel when a driver steers a steering wheel in a state where the vehicle stops, whereby a moment to turn the vehicle is generated, and an assist torque for steering the steering wheel is generated.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: April 27, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Ayumu Miyajima, Toru Takahashi, Naoshi Yamaguchi, Makoto Yamakado, Masanori Ichinose, Takehiko Kowatari, Atsushi Yokoyama
  • Patent number: 7648003
    Abstract: In a power steering system comprising a power cylinder for assisting a steering power of a steering mechanism, a hydraulic pump for supplying a hydraulic pressure to the power cylinder, a first oil passage and a second oil passage connecting the power cylinder and the hydraulic pump respectively, a motor for driving the hydraulic pump, and power steering control means for calculating a command value to the motor based on the steering torque, a flow rate of the working oil supplied from a high-pressure side oil passage to a low-pressure side oil passage is restrained at the transition from the end of the steering state (lock end) of the steering mechanism to the returning. The flow-rate restraint increasingly corrects a driving current of the motor in the steering direction or limits the flow rate of the working oil.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: January 19, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Ayumu Miyajima, Isamu Tsubono, Takaomi Nishigaito, Toru Takahashi, Mitsuo Sasaki, Toshimitsu Sakaki, Tatsuo Matsumura
  • Patent number: 7631722
    Abstract: In a power steering system, the steering state of wheels is detected based on the steering speed to judge as to whether the steering state is in turning of the steering wheel or holding of steering speed is the steering wheels. At the time of the steering operation state, the control is executed so that a difference between a torque command value to an electric motor and the actual torque thereof will become smaller. Also, at the time of the holding operation state, the control is executed so that a difference between the revolution speed of the electric motor and a revolution-speed command value thereto will become smaller.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: December 15, 2009
    Inventors: Ayumu Miyajima, Makoto Yamakado, Toru Takahashi, Naoshi Yamaguchi, Yoshitaka Sugiyama
  • Patent number: 7584816
    Abstract: There is provided a power steering system including an electric motor for generating a steering force in response to an command value, and a controller for generating the command value to the electric motor. Here, the controller generates the command value in correspondence with steering state of wheels, thereby controlling torque or rotation number of the electric motor.
    Type: Grant
    Filed: June 6, 2005
    Date of Patent: September 8, 2009
    Assignee: Hitachi, Ltd.
    Inventors: Ayumu Miyajima, Makoto Yamakado, Tooru Takahashi, Yoshitaka Sugiyama, Naoshi Yamaguchi
  • Publication number: 20090195056
    Abstract: A brake controller for controlling a plurality of actuators for driving braking members of a plurality of brakes is disclosed, where the controller includes a performance setting unit for setting desired performance required of the brakes; a braking force calculating unit for calculating a desired braking force to be produced by each brake; a drive ratio calculating unit for calculating drive ratios at which the actuators operate to achieve the desired performance and to make the plurality of brakes produce a braking force equal to or nearly equal to the desired braking force; and a drive signal output unit for providing the actuators drive signals corresponding to the drive ratios for the actuators.
    Type: Application
    Filed: February 2, 2009
    Publication date: August 6, 2009
    Applicant: Hitachi, Ltd.
    Inventors: Shingo NASU, Ayumu MIYAJIMA, Toshiyuki INNAMI, Kimio NISHINO
  • Publication number: 20070209859
    Abstract: In a power steering system comprising a power cylinder for assisting a steering power of a steering mechanism, a hydraulic pump for supplying a hydraulic pressure to the power cylinder, a first oil passage and a second oil passage connecting the power cylinder and the hydraulic pump respectively, a motor for driving the hydraulic pump, and power steering control means for calculating a command value to the motor based on the steering torque, a flow rate of the working oil supplied from a high-pressure side oil passage to a low-pressure side oil passage is restrained at the transition from the end of the steering state (lock end) of the steering mechanism to the returning. The flow-rate restraint increasingly corrects a driving current of the motor in the steering direction or limits the flow rate of the working oil.
    Type: Application
    Filed: January 18, 2007
    Publication date: September 13, 2007
    Applicant: Hitachi, Ltd.
    Inventors: Ayumu Miyajima, Isamu Tsubono, Takaomi Nishigaito, Toru Takahashi, Mitsuo Sasaki, Toshimitsu Sakaki, Tatsuo Matsumura
  • Publication number: 20070205037
    Abstract: In a power steering system, the steering state of wheels is detected based on the steering speed to judge as to whether the steering state is in turning of the steering wheel or holding of steering speed is the steering wheels. At the time of the steering operation state, the control is executed so that a difference between a torque command value to an electric motor and the actual torque thereof will become smaller. Also, at the time of the holding operation state, the control is executed so that a difference between the revolution speed of the electric motor and a revolution-speed command value thereto will become smaller.
    Type: Application
    Filed: January 18, 2007
    Publication date: September 6, 2007
    Applicant: HITACHI, LTD.
    Inventors: Ayumu MIYAJIMA, Makoto YAMAKADO, Toru TAKAHASHI, Naoshi YAMAGUCHI, Yoshitaka SUGIYAMA
  • Patent number: 7264181
    Abstract: Using a swirl type fuel injection valve, a concentrated spray area and a thin spray area are formed, the positions thereof are adjusted, and the spray is made to conform to the geometric shape of the engine and mounting position of the fuel injection valve, so as to reduce the fuel consumption and control the unburnt components in exhaust gas. The fuel injection valve is so constructed that a step is formed on the injection hole opening of the fuel injection valve, so as to provide two or more edge transition portions at the injection hole opening, resulting from the step, and the line connecting the edge transition portions forms an oblique angle relative to the wall formed by the step perpendicular to the injection hole center axis and the angled wall.
    Type: Grant
    Filed: December 28, 2004
    Date of Patent: September 4, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Motoyuki Abe, Yoshio Okamoto, Yuzo Kadomukai, Makoto Yamakado, Ayumu Miyajima, Hiromasa Kubo, Toru Ishikawa, Yasuo Namaizawa
  • Publication number: 20070176488
    Abstract: In order to reduce a steering torque during stoppage of a vehicle, according to the invention, opposite drive torques in normal and reverse directions are applied to a left rear wheel and a right rear wheel when a driver steers a steering wheel in a state where the vehicle stops, whereby a moment to turn the vehicle is generated, and an assist torque for steering the steering wheel is generated.
    Type: Application
    Filed: November 15, 2006
    Publication date: August 2, 2007
    Applicant: Hitachi, Ltd.
    Inventors: Ayumu Miyajima, Toru Takahashi, Naoshi Yamaguchi, Makoto Yamakado, Masanori Ichinose, Takehiko Kowatari, Atsushi Yokoyama
  • Patent number: 7231902
    Abstract: At an outlet portion of an injection hole (8) of a fuel injection valve (1), through removal of a part (A1, 7B) of a wall forming the injection hole (8), a restriction to a spray flow is released, thereby, a deflection spray is formed in which the spray is rich at the side of restriction released and is learn at the side of restricted, accordingly, ignition property of an internal combustion engine is improved, and an optimum spray is realized which reduces exhaust amount of unburnt gas components.
    Type: Grant
    Filed: May 23, 2005
    Date of Patent: June 19, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Ayumu Miyajima, Yoshio Okamoto, Yuzo Kadomukai, Shigenori Togashi, Kiyoshi Amo, Makoto Yamakado, Tohru Ishikawa, Hiromasa Kubo, Hiroshi Fujii
  • Patent number: 7017556
    Abstract: An engine startup fuel control system for use with a four-cycle internal combustion engine of the type having a plurality of combustion chambers, an air intake passageway, a source of fuel, a crankshaft and a camshaft which operates the engine cylinder valves. A multipoint fuel injector is associated with each combustion chamber and each multipoint fuel injector has an inlet connected to the fuel source and an outlet connected to the air intake passageway adjacent its associated combustion chamber. A crankshaft position sensor generates an output signal representative of the angular position of the crankshaft while, similarly, a camshaft position sensor generates an output signal representative of the angular position of the camshaft. An engine control unit is programmed to determine the synchronization of the engine in response to the output signals from the crankshaft position sensor and camshaft position sensor.
    Type: Grant
    Filed: January 13, 2004
    Date of Patent: March 28, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Jonathan Borg, Shigeru Oho, Frank Warren Hunt, Ayumu Miyajima