Patents by Inventor B. Keith Jenkins

B. Keith Jenkins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6445470
    Abstract: Novel apparatus for simultaneous spatial modulation of a set of angularly multiplexed individually coherent but mutually incoherent optical beams is disclosed, comprising means for generating a set of two or more individually coherent beams that have at least one optical wavelength in common, pairwise, and are assured to be mutually incoherent, and means for directing the set of individually coherent but mutually incoherent beams to a spatial modulation means, such that a spatially overlapping group of individually coherent but mutually incoherent beams overlap spatially in at least one region of the spatial modulation means and are angularly multiplexed within the region. Such simultaneous spatial modulation is a key feature, for example, in highly multiplexed photonic interconnection, memory, and display systems with maximum optical throughput efficiency and minimum crosstalk, based on parallel incoherent/coherent double angularly multiplexed holographic recording and readout principles.
    Type: Grant
    Filed: August 27, 2000
    Date of Patent: September 3, 2002
    Assignee: University of Southern California
    Inventors: B. Keith Jenkins, Armand R. Tanguay, Jr.
  • Patent number: 6128109
    Abstract: Apparatus is provided for the readout, and in certain applications the display, of information stored within incoherent/coherent double angularly multiplexed volume holographic optical elements. Such multiplexed volume holographic optical elements are based on parallel incoherent/coherent double angularly multiplexed volume holographic recording and readout principles, and are designed to exhibit maximum optical throughput efficiency and minimum crosstalk. Applications for this novel holographic readout apparatus, when used in conjunction with the aforementioned incoherent/coherent double angularly multiplexed volume holographic optical elements, include photonic interconnections for neural networks, telecommunications switching, and digital computing; optical information processors and optical memories; and optical display systems.
    Type: Grant
    Filed: June 23, 1997
    Date of Patent: October 3, 2000
    Assignee: University of Southern California
    Inventors: B. Keith Jenkins, Armand R. Tanguay, Jr.
  • Patent number: 5661577
    Abstract: Novel multiplexed volume holographic optical elements for the development of highly multiplexed photonic interconnection and holographic memory systems with maximum optical throughput efficiency and minimum crosstalk, based on parallel incoherent/coherent double angularly multiplexed volume holographic recording and readout principles, are disclosed. These principles further provide for arbitrarily weighted and independent interconnections, which are of potential importance in the development of densely interconnected photonic implementations of neural networks, photonic interconnection networks for telecommunications switching and digital computing applications, optical information processors, and optical memories. Utilization of the principles that are key features of this holographic element allows for the single step transfer of all or part of the information stored in a three-dimensional holographic storage device to a second such device in a single exposure step.
    Type: Grant
    Filed: May 15, 1995
    Date of Patent: August 26, 1997
    Assignee: University of Southern California
    Inventors: B. Keith Jenkins, Armand R. Tanguay, Jr.
  • Patent number: 5568574
    Abstract: Computation-intensive applications such as sensor signal processing, sensor fusion, image processing, feature identification, pattern recognition, and early vision place stringent requirements on the computational capacity, size, weight, and power dissipation of modular computational systems intended for both embedded and high performance computer environments. Such ultra high speed, ultra high density computational modules will typically be configured with multiple processor, memory, dedicated sensor, and digital signal processing chips in close-packed multichip modules. The present invention relates to a novel architecture and associated apparatus for the development of highly multiplexed photonic interconnections between pairs of such electronic chips incorporated in vertical stacks within three-dimensional multichip module configurations.
    Type: Grant
    Filed: June 12, 1995
    Date of Patent: October 22, 1996
    Assignee: University of Southern California
    Inventors: Armand R. Tanguay, Jr., B. Keith Jenkins
  • Patent number: 5416616
    Abstract: Novel apparatuses for readout of multiplexed volume holographic optical elements, based on parallel incoherent/coherent double angularly multiplexed holographic recording and readout principles, provide for hologram readout with high optical throughput efficiency and minimal crosstalk. Such holographic element readout apparatuses have applications in photonic interconnections for neural networks, telecommunications switching and digital computing; optical information processors and optical memories; and optical display systems. Embodiments are included that allow incoherent superposition of reconstructed images and simplified parallel readout of the volume holographic optical elements. The apparatuses can read out holographic elements that are either optically or computer generated and that are based on continuous-volume or stratified-volume holographic media.
    Type: Grant
    Filed: June 8, 1992
    Date of Patent: May 16, 1995
    Assignee: University of Southern California
    Inventors: B. Keith Jenkins, Armand R. Tanguay, Jr.
  • Patent number: 5339177
    Abstract: The present invention relates to a novel source array comprising a plurality of sources of optical illumination that are at once both individually coherent and mutually incoherent. A primary application of such a source array is to provide the requisite optical source beams in a novel architecture and associated apparatus for the development of highly multiplexed photonic interconnection networks and holographic optical elements with maximum optical throughput efficiency and minimum interchannel crosstalk, based on parallel incoherent/coherent holographic recording and readout principles that are described herein. In one embodiment, the source array is configured from a plurality of coherent sources of illumination; in a second embodiment, a single source of coherent illumination is expanded to illuminate a phase modulator array, within which each separate phase modulator is driven at a distinct oscillation frequency such that the set of resultant modulated beams exhibits mutual incoherence.
    Type: Grant
    Filed: February 13, 1992
    Date of Patent: August 16, 1994
    Assignee: University of Southern California
    Inventors: B. Keith Jenkins, Armand R. Tanguay, Jr.
  • Patent number: 5285308
    Abstract: The present invention relates to a novel spatial light modulator comprising a plurality of individual pixels that each contain separate detectors, electronic circuitry, and optical modulators. A primary application of such a spatial light modulator is to provide the requisite nonlinear relationship between a plurality of optical beams fanned in to each detector on the one hand, and a plurality of optical beams fanned out from such modulator on the other, on a pixel-by-pixel basis. In one embodiment, the spatial light modulator is configured to differentially amplify the inputs to two separate detectors within each pixel, and to transform iORIGIN OF INVENTIONThe U.S. Government has certain rights in this invention pursuant to Contract No. F49620-87-C0007, awarded by the Department of the Air Force, and to Grant No. AFOSR-89-0466, awarded by the Defense Advanced Research Projects Agency through the Department of the Air Force.
    Type: Grant
    Filed: February 13, 1992
    Date of Patent: February 8, 1994
    Assignee: University of Southern California
    Inventors: B. Keith Jenkins, Armand R. Tanguay, Jr.
  • Patent number: 5121231
    Abstract: The present invention relates to a novel architecture and associated apparatus for the development of highly multiplexed photonic interconnection networks and holographic optical elements with maximum optical throughput efficiency and minimum interchannel crosstalk, based on parallel incoherent/coherent holographic recording and readout principles. This scheme further provides for arbitrarily weighted and independent interconnections, which are of potential importance in the development of neuro-optical computers, as well as photonic interconnection networks and multiplexed holographic optical elements. In addition, the extremely difficult problem of copying the contents of a three-dimensional holographic storage device in one step is soluble by utilization of the architectural principles and specified apparatus that are key features of this invention.
    Type: Grant
    Filed: April 6, 1990
    Date of Patent: June 9, 1992
    Assignee: University of Southern California
    Inventors: B. Keith Jenkins, Armand R. Tanguay, Jr.