Patents by Inventor Babak Amir-Parviz

Babak Amir-Parviz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170129630
    Abstract: Described are systems, methods, and apparatus for replacing the corrugated containers and dunnage to facilitate packaging of items in foam containers, referred to as “polymer encapsulations,” that can be used to protect and contain the item during shipment. When one or more items are ordered for delivery to a destination, the item(s) is picked from inventory and a rapidly setting polymer foam is injected around the bagged item to encapsulate and protect the item. For example, at packing, rather than placing the item in a corrugated container, temporary walls may be positioned around the bagged item and a pre-polymer injected into the space between the walls that surround the item such that a polymer forms that encases the item. After the polymer sets, the walls are retracted and the item is protected by the formed polymer encapsulation and available for transport to the destination.
    Type: Application
    Filed: November 9, 2015
    Publication date: May 11, 2017
    Inventors: Douglas Weibel, Babak Amir Parviz
  • Publication number: 20140134603
    Abstract: An assay method is described, which comprises the steps of immobilizing a binding partner (e.g., an antigen or antibody) for an analyte to be detected (e.g., an antibody or antigen) on a portion of a surface of a microfluidic chamber; passing a fluid sample over the surface and allowing the analyte to bind to the binding partner; allowing a metal colloid, e.g., a gold-conjugated antibody, to associate with the bound analyte; flowing a metal solution, e.g., a silver solution, over the surface such as to form an opaque metallic layer; and detecting the presence of said metallic layer, e.g., by visual inspection or by measuring light transmission through the layer, conductivity or resistance of the layer, or metal concentration in the metal solution after flowing the metal solution over the surface.
    Type: Application
    Filed: September 30, 2013
    Publication date: May 15, 2014
    Inventors: Samuel K. Sia, Vincent Linder, Babak Amir-parviz, Adam Siegel, George M. Whitesides
  • Patent number: 8574924
    Abstract: An assay method is described, which comprises the steps of immobilizing a binding partner (e.g., an antigen or antibody) for an analyte to be detected (e.g., an antibody or antigen) on a portion of a surface of a microfluidic chamber; passing a fluid sample over the surface and allowing the analyte to bind to the binding partner; allowing a metal colloid, e.g., a gold-conjugated antibody, to associate with the bound analyte; flowing a metal solution, e.g., a silver solution, over the surface such as to form an opaque metallic layer; and detecting the presence of said metallic layer, e.g., by visual inspection or by measuring light transmission through the layer, conductivity or resistance of the layer, or metal concentration in the metal solution after flowing the metal solution over the surface.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: November 5, 2013
    Assignee: President and Fellows of Harvard College
    Inventors: Samuel K. Sia, Vincent Linder, Babak Amir-Parviz, Adam Siegel, George M. Whitesides
  • Patent number: 8357616
    Abstract: The present invention provides fabrication methods using sacrificial materials comprising polymers. In some embodiments, the polymer may be treated to alter its solubility with respect to at least one solvent (e.g., aqueous solution) used in the fabrication process. The preparation of the sacrificial materials is rapid and simple, and dissolution of the sacrificial material can be carried out in mild environments. Sacrificial materials of the present invention may be useful for surface micromachining, bulk micromachining, and other microfabrication processes in which a sacrificial layer is employed for producing a selected and corresponding physical structure.
    Type: Grant
    Filed: April 14, 2006
    Date of Patent: January 22, 2013
    Assignee: President and Fellows of Harvard College
    Inventors: Vincent Linder, Declan Ryan, Byron Gates, Babak Amir-parviz, George M. Whitesides
  • Publication number: 20100279310
    Abstract: An assay method is described, which comprises the steps of immobilizing a binding partner (e.g., an antigen or antibody) for an analyte to be detected (e.g., an antibody or antigen) on a portion of a surface of a microfluidic chamber; passing a fluid sample over the surface and allowing the analyte to bind to the binding partner; allowing a metal colloid, e.g., a gold-conjugated antibody, to associate with the bound analyte; flowing a metal solution, e.g., a silver solution, over the surface such as to form an opaque metallic layer; and detecting the presence of said metallic layer, e.g., by visual inspection or by measuring light transmission through the layer, conductivity or resistance of the layer, or metal concentration in the metal solution after flowing the metal solution over the surface.
    Type: Application
    Filed: April 28, 2010
    Publication date: November 4, 2010
    Applicant: President and Fellows of Harvard College
    Inventors: Samuel K. Sia, Vincent Linder, Adam Siegel, George M. Whitesides, Babak Amir-Parviz
  • Patent number: 7741014
    Abstract: A series of methods, compositions, and articles for patterning a surface with multiple, aligned layers of molecules, by exposing the molecules to electromagnetic radiation is provided. In certain embodiments, a single photomask acts as an area-selective filter for light at multiple wavelengths. A single set of exposures of multiple wavelengths through this photomask may make it possible to fabricate a pattern comprising discontinuous multiple regions, where the regions differ from each other in at least one chemical and/or physical property, without acts of alignment between the exposures. In certain embodiments, the surface includes molecules attached thereto that can be photocleaved upon exposure to a certain wavelength of radiation, thereby altering the chemical composition on at least a portion of the surface.
    Type: Grant
    Filed: April 10, 2006
    Date of Patent: June 22, 2010
    Assignee: President and Fellows of Harvard College
    Inventors: Declan Ryan, Babak Amir-Parviz, Vincent Linder, Vincent Semetey, Samuel K. Sia, George M. Whitesides
  • Patent number: 7736890
    Abstract: An assay method is described, which comprises the steps of immobilizing a binding partner (e.g., an antigen or antibody) for an analyte to be detected (e.g., an antibody or antigen) on a portion (140) of a surface (130) of a microfluidic chamber (120,122,124); passing a fluid sample over the surface and allowing the analyte to bind to the binding partner; allowing a metal colloid, e.g., a gold-conjugated antibody, to associate with the bound analyte; flowing a metal solution, e.g., a silver solution, over the surface such as to form an opaque metallic layer; and detecting the presence of said metallic layer, e.g., by visual inspection or by measuring light transmission through the layer, conductivity or resistance of the layer, or metal concentration in the metal solution after flowing the metal solution over the surface.
    Type: Grant
    Filed: December 29, 2004
    Date of Patent: June 15, 2010
    Assignee: President and Fellows of Harvard College
    Inventors: Samuel K. Sia, Vincent Linder, Babak Amir-Parviz, Adam Siegel, George M. Whitesides
  • Publication number: 20070298433
    Abstract: An assay method is described, which comprises the steps of immobilizing a binding partner (e.g., an antigen or antibody) for an analyte to be detected (e.g., an antibody or antigen) on a portion (140) of a surface (130) of a microfluidic chamber (120,122,124); passing a fluid sample over the surface and allowing the analyte to bind to the binding partner; allowing a metal colloid, e.g., a gold-conjugated antibody, to associate with the bound analyte; flowing a metal solution, e.g., a silver solution, over the surface such as to form an opaque metallic layer; and detecting the presence of said metallic layer, e.g., by visual inspection or by measuring light transmission through the layer, conductivity or resistance of the layer, or metal concentration in the metal solution after flowing the metal solution over the surface.
    Type: Application
    Filed: December 29, 2004
    Publication date: December 27, 2007
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Samuel Sia, Vincent Linder, Adam Siegel, George Whitesides, Babak Amir-Parviz
  • Publication number: 20070000866
    Abstract: The present invention provides a series of methods, compositions, and articles for patterning a surface with multiple, aligned layers of molecules, by exposing the molecules to electromagnetic radiation. In certain embodiments, a single photomask acts as an area-selective filter for light at multiple wavelengths. A single set of exposures of multiple wavelengths through this photomask may make it possible to fabricate a pattern comprising discontinuous multiple regions, where the regions differ from each other in at least one chemical and/or physical property, without acts of alignment between the exposures. In certain embodiments, the surface includes molecules attached thereto that can be photocleaved upon exposure to a certain wavelength of radiation, thereby altering the chemical composition on at least a portion of the surface. In some embodiments, the molecules attached to the surface may include thiol moieties (e.g., as in alkanethiol), by which the molecule can become attached to the surface.
    Type: Application
    Filed: April 10, 2006
    Publication date: January 4, 2007
    Inventors: Declan Ryan, Babak Amir-Parviz, Vincent Linder, Vincent Semetey, Samuel Sia, George Whitesides