Patents by Inventor Babak Hodjat

Babak Hodjat has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240354651
    Abstract: A system and method for adding explainability to deep learning models based on rule-set evolution is provided. A set of inputs from an input unit is received which comprises pre-generated deep learning models. Set of inputs is evaluated using pre-defined querying datasets. An output comprising outcomes of the evaluation is generated and mapped with each of the pre-defined querying datasets used for querying deep learning model. A new dataset is generated based on the mapping. Population of initial rule-set models is randomly generated based on a set of hyper parameters. The hyper parameters relate to configuration parameters used for generating population of initial rule-set models. An evolution process is carried out on generated rule-set models for evolving the rule-set models by using the generated new datasets. Lastly, the evolved rule-set model is executed to solve one or more real-world problems.
    Type: Application
    Filed: April 22, 2024
    Publication date: October 24, 2024
    Inventors: Risto Miikkulainen, Babak Hodjat, Hormoz Shahrzad
  • Patent number: 12099934
    Abstract: User-driven exploration functionality, referred to herein as a Scratchpad, is a post-learning extension for machine learning systems. For example, in ESP, consisting of the Predictor (a surrogate model of the domain) and Prescriptor (a solution generator model), the Scratchpad allows the user to modify the suggestions of the Prescriptor, and evaluate each such modification interactively with the Predictor. Thus, the Scratchpad makes it possible for the human expert and the AI to work together in designing better solutions. This interactive exploration also allows the user to conclude that the solutions derived in this process are the best found, making the process trustworthy and transparent to the user.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: September 24, 2024
    Assignee: Cognizant Technology Solutions U.S. Corporation
    Inventors: Olivier Francon, Babak Hodjat, Risto Miikkulainen
  • Publication number: 20240311441
    Abstract: A domain-independent problem-solving system and process addresses domain-specific problems with varying dimensionality and complexity, solving different problems with little or no hyperparameter tuning, and adapting to changes in the domain, thus implementing lifelong learning.
    Type: Application
    Filed: March 13, 2024
    Publication date: September 19, 2024
    Applicant: Cognizant Technology Solutions U.S. Corporation
    Inventors: Babak Hodjat, Hormoz Shahrzad, Risto Miikkulainen
  • Patent number: 11783195
    Abstract: A surrogate-assisted evolutionary optimization method, ESP, discovers decision strategies in real-world applications. Based on historical data, a surrogate is learned and used to evaluate candidate policies with minimal exploration cost. Extended into sequential decision making, ESP is highly sample efficient, has low variance, and low regret, making the policies reliable and safe. As an unexpected result, the surrogate also regularizes decision making, making it sometimes possible to discover good policies even when direct evolution fails.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: October 10, 2023
    Inventors: Olivier Francon, Babak Hodjat, Risto Miikkulainen, Hormoz Shahrzad
  • Patent number: 11775841
    Abstract: An explainable surrogate-assisted evolutionary optimization method, E-ESP, discovers rule-based decision strategies for which actions to take to achieve certain outcomes when historical training data is limited or unavailable. The resulting rules are human readable and thus facilitate explainability and trustworthiness unlike the black box solutions resulting from neural network solutions.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: October 3, 2023
    Inventors: Hormoz Shahrzad, Babak Hodjat
  • Patent number: 11663492
    Abstract: Roughly described, a problem solving platform distributes the solving of the problem over a evolvable individuals, each of which also evolves its own pool of actors. The actors have the ability to contribute collaboratively to a solution at the level of the individual, instead of each actor being a candidate for the full solution. Populations evolve both at the level of the individual and at the level of actors within an individual. In an embodiment, an individual defines parameters according to which its population of actors can evolve. The individual is fixed prior to deployment to a production environment, but its actors can continue to evolve and adapt while operating in the production environment. Thus a goal of the evolutionary process at the level of individuals is to find populations of actors that can sustain themselves and survive, solving a dynamic problem for a given domain as a consequence.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: May 30, 2023
    Assignee: Cognizant Technology Solutions
    Inventors: Babak Hodjat, Hormoz Shahrzad
  • Patent number: 11574202
    Abstract: Roughly described, an evolutionary data mining system includes at least two processing units, each having a pool of candidate individuals in which each candidate individual has a fitness estimate and experience level. A first processing unit tests candidate individuals against training data, updates an individual's experience level, and assigns each candidate to one of multiple layers of the candidate pool based on the individual's experience level. Individuals within the same layer of the same pool compete with each other to remain candidates. The first processing unit selects a set of candidates to retain based on the relative novelty of their responses to the training data. The first processing unit reports successful individuals to the second processing unit, and receives individuals for further testing from the second processing unit. The second processing unit selects individuals to retain based on their fitness estimate.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: February 7, 2023
    Assignee: Cognizant Technology Solutions U.S. Corporation
    Inventors: Hormoz Shahrzad, Babak Hodjat, Risto Miikkulainen
  • Publication number: 20230025388
    Abstract: A system and method of combining and improving sets of diverse prescriptors for Evolutionary Surrogate-assisted Prescription (ESP) model is described. The prescriptors are distilled into neural networks and evolved further using ESP. The system and method can handle diverse sets of prescriptors in that it makes no assumptions about the form of the input (i.e., contexts) of the initial prescriptors; it relies only on the prescriptions made in order to distill each prescriptor to a neural network with a fixed form. The resulting set of high performing prescriptors provides a practical way for ESP to incorporate external human and machine knowledge and generate more accurate and fitting set of solutions.
    Type: Application
    Filed: June 8, 2022
    Publication date: January 26, 2023
    Applicant: Cognizant Technology Solutions U.S. Corporation
    Inventors: Elliot Meyerson, Risto Miikkulainen, Olivier Francon, Babak Hodjat, Darren Sargent
  • Patent number: 11507844
    Abstract: The technology disclosed proposes a novel asynchronous evaluation strategy (AES) that increases throughput of evolutionary algorithms by continuously maintaining a queue of K individuals ready to be sent to the worker nodes for evaluation and evolving the next generation once a fraction Mi of the K individuals have been evaluated by the worker nodes, where Mi<<K. A suitable value for Mi is determined experimentally, balancing diversity and efficiency. The technology disclosed is extended to coevolution of deep neural network supermodules and blueprints in the form of AES for cooperative evolution of deep neural networks (CoDeepNEAT-AES). Applied to image captioning domain, a threefold speedup is observed on 200 graphics processing unit (GPU) worker nodes, demonstrating that the disclosed AES and CoDeepNEAT-AES are promising techniques for evolving complex systems with long and variable evaluation times.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: November 22, 2022
    Assignee: Cognizant Technology Solutions U.S. Corporation
    Inventors: Jason Zhi Liang, Hormoz Shahrzad, Babak Hodjat, Risto Miikkulainen
  • Patent number: 11481639
    Abstract: The computer system and method herein uses a multi-objective driven evolutionary algorithm that is better able to find optimum solutions to a problem because it balances the use of objectives as composite functions, and relative novelty and diversity in evolutionary optimization. In particular, the system and method herein described herein presents an improved process which introduces novelty pulsation, i.e., a systematic method to alternate between novelty selection and local optimization.
    Type: Grant
    Filed: February 25, 2020
    Date of Patent: October 25, 2022
    Assignee: Cognizant Technology Solutions U.S. Corporation
    Inventors: Hormoz Shahrzad, Babak Hodjat, Risto Miikkulainen
  • Patent number: 11336672
    Abstract: Roughly described, anomalous behavior of a machine-learned computer-implemented individual can be detected while operating in a production environment. A population of individuals is represented in a computer storage medium, each individual identifying actions to assert in dependence upon input data. As part of machine learning, the individuals are tested against samples of training data and the actions they assert are recorded in a behavior repository. The behavior of an individual is characterized from the observations recorded during training. In a production environment, the individuals are operated by applying production input data, and the production behavior of the individual is observed and compared to the behavior of the individual represented in the behavior repository. A determination is made from the comparison of whether the individual's production behavior during operation is anomalous.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: May 17, 2022
    Assignee: Cognizant Technology Solutions U.S. Corporation
    Inventor: Babak Hodjat
  • Patent number: 11288579
    Abstract: Roughly described, in an evolutionary technique for finding optimal solutions to a provided problem, a computer system uses a grouping algorithm that is better able to find diverse and optimum solutions in data mining environment with multiple solution landscapes and a plurality of candidate individuals. Each candidate individual identifies with a potential solution, and is associated with a testing experience level and one or more partition tags. Each candidate individual is assigned into one of a plurality of competition groups in dependence upon the individual's testing experience level and partition tag. During competition among candidate individuals, a candidate individual can only replace another candidate individual if both the candidate individuals have a common partition tag and are in the same competition group. A candidate individual cannot replace another candidate individual if they have different partition tags or are in different competition groups.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: March 29, 2022
    Assignee: Cognizant Technology Solutions U.S. Corporation
    Inventors: Hormoz Shahrzad, Babak Hodjat
  • Patent number: 11281977
    Abstract: Roughly described, a computer-implemented evolutionary system evolves candidate solutions to provided problems. It includes a memory storing a candidate gene database containing active and epigenetic individuals; a gene pool processor which tests only active individuals on training data and updates their fitness estimates; a competition module which selects active individuals for discarding in dependence upon both their updated fitness estimate and their testing experience level; and a gene harvesting module providing for deployment selected ones of the individuals from the gene pool. The gene database has an experience layered elitist pool, and individuals compete only with other individuals in their same layer. Certain individuals are made epigenetic in the procreation module, after which they are not subjected to testing and competition. Epigenetic individuals are retained in the candidate gene pool regardless of their fitness.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: March 22, 2022
    Assignee: Cognizant Technology Solutions U.S. Corporation
    Inventors: Babak Hodjat, Hormoz Shahrzad
  • Patent number: 11281978
    Abstract: In many environments, rules are trained on historical data to predict an outcome likely to be associated with new data. Described is a ruleset which predicts the probability of a particular outcome. Roughly described, an individual identifies a ruleset, where each of the rules has a plurality of conditions and also indicates a rule-level probability of a predetermined classification. The conditions indicate a relationship (e.g., ‘<’ or ‘!<’) between an input feature and a corresponding value. The rules are evaluated against input data to derive a certainty for each condition, and aggregated to a rule-level certainty. The rule probabilities are combined using the rule-level certainty values to derive a probability output for the ruleset, which can be used to provide a basis for decisions. In an embodiment, the per-condition certainty values are fuzzy values aggregated by fuzzy logic. A novel genetic algorithm can be used to derive the ruleset.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: March 22, 2022
    Assignee: Cognizant Technology Solutions U.S. Corporation
    Inventors: Babak Hodjat, Hormoz Shahrzad
  • Publication number: 20210390417
    Abstract: An explainable surrogate-assisted evolutionary optimization method, E-ESP, discovers rule-based decision strategies for which actions to take to achieve certain outcomes when historical training data is limited or unavailable. The resulting rules are human readable and thus facilitate explainability and trustworthiness unlike the black box solutions resulting from neural network solutions.
    Type: Application
    Filed: June 15, 2020
    Publication date: December 16, 2021
    Applicant: Cognizant Technology Solutions U.S. Corporation
    Inventors: Hormoz Shahrzad, Babak Hodjat
  • Publication number: 20210312297
    Abstract: User-driven exploration functionality, referred to herein as a Scratchpad, is a post-learning extension for machine learning systems. For example, in ESP, consisting of the Predictor (a surrogate model of the domain) and Prescriptor (a solution generator model), the Scratchpad allows the user to modify the suggestions of the Prescriptor, and evaluate each such modification interactively with the Predictor. Thus, the Scratchpad makes it possible for the human expert and the AI to work together in designing better solutions. This interactive exploration also allows the user to conclude that the solutions derived in this process are the best found, making the process trustworthy and transparent to the user.
    Type: Application
    Filed: March 23, 2021
    Publication date: October 7, 2021
    Applicant: Cognizant Technology Solutions U.S. Corporation
    Inventors: Olivier Francon, Babak Hodjat, Risto Miikkulainen
  • Patent number: 10956823
    Abstract: In many environments, rules are trained on historical data to predict an outcome likely to be associated with new data. Described is a ruleset which predicts the probability of a particular outcome. Roughly described, an individual identifies a ruleset, where each of the rules has a plurality of conditions and also indicates a rule-level probability of a predetermined classification. The conditions indicate a relationship (e.g. ‘<’ or ‘!<’) between an input feature and a corresponding value. The rules are evaluated against input data to derive a certainty for each condition, and aggregated to a rule-level certainty. The rule probabilities are combined using the rule-level certainty values to derive a probability output for the ruleset, which can be used to provide a basis for decisions. In an embodiment, the per-condition certainty values are fuzzy values aggregated by fuzzy logic. A novel genetic algorithm can be used to derive the ruleset.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: March 23, 2021
    Assignee: Cognizant Technology Solutions U.S. Corporation
    Inventors: Babak Hodjat, Hormoz Shahrzad
  • Patent number: 10839938
    Abstract: Roughly described, a computer-implemented evolutionary data mining system implements a genetic algorithm. The Genetic algorithm includes a requirements checkpoint, which selects individuals for discarding from the pool of candidate genomes which do not meet a predetermined minimum behavioral requirement for operating in production. The requirements checkpoint enforces an absolute minimum threshold for a behavioral characteristic of the individual, and is different from a competition step in which individuals are selected for removal on the basis of comparisons with each other. A requirements checkpoint may be inserted at various points within the genetic algorithm flow or at reasonable intervals during the training cycle. If at any of these checkpoints the minimum requirement is not met, the candidate individual may be removed from the candidate pool.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: November 17, 2020
    Assignee: Cognizant Technology Solutions U.S. Corporation
    Inventors: Babak Hodjat, Hormoz Shahrzad
  • Publication number: 20200351290
    Abstract: Roughly described, anomalous behavior of a machine-learned computer-implemented individual can be detected while operating in a production environment. A population of individuals is represented in a computer storage medium, each individual identifying actions to assert in dependence upon input data. As part of machine learning, the individuals are tested against samples of training data and the actions they assert are recorded in a behavior repository. The behavior of an individual is characterized from the observations recorded during training. In a production environment, the individuals are operated by applying production input data, and the production behavior of the individual is observed and compared to the behavior of the individual represented in the behavior repository. A determination is made from the comparison of whether the individual's production behavior during operation is anomalous.
    Type: Application
    Filed: July 21, 2020
    Publication date: November 5, 2020
    Applicant: Cognizant Technology Solutions U.S. Corporation
    Inventor: Babak Hodjat
  • Publication number: 20200311556
    Abstract: A surrogate-assisted evolutionary optimization method, ESP, discovers decision strategies in real-world applications. Based on historical data, a surrogate is learned and used to evaluate candidate policies with minimal exploration cost. Extended into sequential decision making, ESP is highly sample efficient, has low variance, and low regret, making the policies reliable and safe. As an unexpected result, the surrogate also regularizes decision making, making it sometimes possible to discover good policies even when direct evolution fails.
    Type: Application
    Filed: March 26, 2020
    Publication date: October 1, 2020
    Applicant: Cognizant Technology Solutions U.S. Corporation
    Inventors: Olivier Francon, Babak Hodjat, Risto Miikkulainen, Hormoz Shahrzad