Patents by Inventor Babak Vosoughi Lahijani

Babak Vosoughi Lahijani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11726262
    Abstract: An in-plane photonic device is provided for transmission of an optical signal across a gap, in particular an in-plane photonic device for use in a photonic integrated circuit with one or more in-plane crossings of electrical connections and photonic waveguides. One embodiment relates to an in-plane photonic device for use in a photonic integrated circuit with in-plane crossings of electrical connections and photonic waveguides, including: at least one input optical waveguide; and at least one output optical waveguide; wherein the at least one input optical waveguide and the at least one output optical waveguides are positioned such that a gap between them separates the input and the output optical waveguide(s), and wherein the input and the output optical waveguides are configured for optical mode matching across the gap, such that an optical signal can be transmitted from the input optical waveguide to the output optical waveguide across the gap.
    Type: Grant
    Filed: May 18, 2022
    Date of Patent: August 15, 2023
    Assignee: DANMARKS TEKNISKE UNIVERSITET
    Inventors: Marcus Albrechtsen, Babak Vosoughi Lahijani, Søren Stobbe, Rasmus Ellebæk Christiansen
  • Patent number: 11549848
    Abstract: An on-chip interferometer and a spectrometer including the interferometer are provided. An on-chip interferometer includes a waveguide for propagation of an optical signal including an input waveguide; at least two interferometer arms having one or more slot waveguides; and an output waveguide; wherein the input waveguide is split into the at least two interferometer arms which are recombined into the output waveguide; and a control mechanism configured for controlling a relative time delay between optical signals propagating in the two interferometer arms by modifying one or more slot widths of one or more of the slot waveguides; and wherein the relative time delay is at least 1, 2, 5, or at least 10 fs or at least one optical period of the longest optical wavelength of the optical signal.
    Type: Grant
    Filed: May 18, 2022
    Date of Patent: January 10, 2023
    Assignee: DANMARKS TEKNISKE UNIVERSITET
    Inventors: Marcus Albrechtsen, Babak Vosoughi Lahijani, Søren Stobbe, Konstantinos Tsoukalas
  • Publication number: 20220349751
    Abstract: An on-chip interferometer and a spectrometer including the interferometer are provided. An on-chip interferometer includes a waveguide for propagation of an optical signal including an input waveguide; at least two interferometer arms having one or more slot waveguides; and an output waveguide; wherein the input waveguide is split into the at least two interferometer arms which are recombined into the output waveguide; and a control mechanism configured for controlling a relative time delay between optical signals propagating in the two interferometer arms by modifying one or more slot widths of one or more of the slot waveguides; and wherein the relative time delay is at least 1, 2, 5, or at least 10 fs or at least one optical period of the longest optical wavelength of the optical signal.
    Type: Application
    Filed: May 18, 2022
    Publication date: November 3, 2022
    Inventors: Marcus Albrechtsen, Babak Vosoughi Lahijani, Søren Stobbe, Konstantinos Tsoukalas
  • Publication number: 20220283372
    Abstract: An in-plane photonic device is provided for transmission of an optical signal across a gap, in particular an in-plane photonic device for use in a photonic integrated circuit with one or more in-plane crossings of electrical connections and photonic waveguides. One embodiment relates to an in-plane photonic device for use in a photonic integrated circuit with in-plane crossings of electrical connections and photonic waveguides, including: at least one input optical waveguide; and at least one output optical waveguide; wherein the at least one input optical waveguide and the at least one output optical waveguides are positioned such that a gap between them separates the input and the output optical waveguide(s), and wherein the input and the output optical waveguides are configured for optical mode matching across the gap, such that an optical signal can be transmitted from the input optical waveguide to the output optical waveguide across the gap.
    Type: Application
    Filed: May 18, 2022
    Publication date: September 8, 2022
    Inventors: Marcus Albrechtsen, Babak Vosoughi Lahijani, Søren Stobbe, Rasmus Ellebæk Christiansen