Patents by Inventor Baher S. Haroun

Baher S. Haroun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10985729
    Abstract: A pressure sensor apparatus is disclosed. The pressure sensor apparatus includes a bulk acoustic wave (BAW) die having a die interface side and a pressure contact side, a sensor BAW resonator and a reference BAW resonator disposed on the die interface side of the BAW die, a control circuit die coupled to the die interface side of the BAW die via an attachment layer, and an extended opening on the pressure contact side that extends into a depth of the BAW die and is generally aligned with the sensor BAW resonator, the extended opening being configured to translate an external pressure on the pressure contact side onto the sensor BAW resonator.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: April 20, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Bichoy Bahr, Baher S. Haroun, Benjamin Stassen Cook
  • Publication number: 20210102996
    Abstract: This disclosure describes a novel method and apparatus for testing TSVs within a semiconductor device. According to embodiments illustrated and described in the disclosure, a TSV may be tested by stimulating and measuring a response from a first end of a TSV while the second end of the TSV held at ground potential. Multiple TSVs within the semiconductor device may be tested in parallel to reduce the TSV testing time according to the disclosure.
    Type: Application
    Filed: December 16, 2020
    Publication date: April 8, 2021
    Inventors: Lee D. Whetsel, Baher S. Haroun
  • Publication number: 20210096442
    Abstract: In described examples, a system (e.g., a security system or a vehicle operator assistance system) is configured to configure a phased spatial light modulator (SLM) to generate a diffraction pattern. A coherent light source is optically coupled to direct coherent light upon the SLM. The SLM is configured to project diffracted coherent light toward a region of interest. An optical element is configured to focus the diffracted coherent light toward the at least one region of interest.
    Type: Application
    Filed: September 27, 2019
    Publication date: April 1, 2021
    Inventors: Jeffrey Matthew Kempf, Nirmal C. Warke, David P. Magee, Rahmi Hezar, Baher S. Haroun
  • Patent number: 10949024
    Abstract: A pulse of terahertz radiation is transmitted through a touch panel formed of a dielectric material. The pulse generates an employable evanescent field in a region adjacent to a touch surface of the touch panel. The terahertz radiation has a frequency range between 0.1 terahertz and 10 terahertz. A reflected pulse is generated from an object located within the region adjacent to the touch surface of the touch panel. A position is triangulated of the object on the touch surface of the touch panel, based at least in part on the reflected pulse.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: March 16, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Baher S. Haroun, Marco Corsi, Brian P. Ginsburg, Vijay B. Rentala, Srinath M. Ramaswamy, Eunyoung Seok
  • Patent number: 10908287
    Abstract: In described examples, an integrated circuit includes a modulator configured to modulate a driving signal for an optical transmitter with a narrow band modulation signal in which the driving signal with a fixed duration is transmitted to the optical transmitter periodically. The integrated circuit also includes a demodulator configured to receive a signal from an optical receiver that is configured to receive a reflection of light transmitted by the optical transmitter off an object, the demodulator configured to discriminate the narrow band modulation signal and estimate a distance of the object using the narrow band modulation signal.
    Type: Grant
    Filed: December 31, 2016
    Date of Patent: February 2, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Nirmal C. Warke, David P. Magee, Baher S. Haroun
  • Patent number: 10901034
    Abstract: This disclosure describes a novel method and apparatus for testing TSVs within a semiconductor device. According to embodiments illustrated and described in the disclosure, a TSV may be tested by stimulating and measuring a response from a first end of a TSV while the second end of the TSV held at ground potential. Multiple TSVs within the semiconductor device may be tested in parallel to reduce the TSV testing time according to the disclosure.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: January 26, 2021
    Assignee: Texas Instruments Incorporated
    Inventors: Lee D. Whetsei, Baher S. Haroun
  • Patent number: 10879856
    Abstract: A sensor circuit includes a sensor array. The sensor array includes a sensor row that includes a first sensor cell, a second sensor cell, and an output stage of a distributed amplifier circuit. The first sensor cell includes a first photodetector, and a first preamplifier stage of the distributed amplifier circuit. The first preamplifier stage is coupled to the first photodetector, and is configured to amplify a signal received from the first photodetector. The second sensor cell includes a second photodetector, and a second preamplifier stage of the distributed amplifier circuit. The second preamplifier stage is coupled to the second photodetector, and is configured to amplify a signal received from the second photodetector. The output stage of the distributed amplifier circuit is coupled to the first and second sensor cells, and is configured to amplify a signal received from the first preamplifier stage and the second preamplifier stage.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: December 29, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Miaad Seyed Aliroteh, Nirmal C. Warke, David P. Magee, Ali Kiaei, Baher S. Haroun, Ajay Singhvi
  • Publication number: 20200292681
    Abstract: Described example aspects include an integrated circuit includes a timing controller configured to select a selected time slot in a measurement period having a plurality of time slots and a transmit driver configured to provide a transmit signal in accordance with the selected time slot, in which the transmit signal is transmitted to an optical transmitter. The integrated circuit also includes a range estimator configured to receive a received signal after the selected time slot from an optical receiver that is configured to receive a reflection of light transmitted by the optical transmitter off an object, the range estimator configured to determine an estimated distance of the object based on the received signal.
    Type: Application
    Filed: March 31, 2020
    Publication date: September 17, 2020
    Inventors: Nirmal C. Warke, David P. Magee, Baher S. Haroun
  • Publication number: 20200295430
    Abstract: A system is provided for transmitting sub-terahertz electro-magnetic radio frequency (RF) signals using a dielectric waveguide (DWG) having a dielectric core member surrounded by dielectric cladding. Multiple radar signals may be generated by a radar module that is coupled to a vehicle. A set of DWG segments may be used to transport the radar signals to various launching structures placed in various locations of the vehicle.
    Type: Application
    Filed: April 1, 2020
    Publication date: September 17, 2020
    Inventor: Baher S. Haroun
  • Publication number: 20200240811
    Abstract: A first amplifier has an input to receive a Hall-signal output current from a first Hall element and has an output to output feedback current in response to the received Hall-signal output current. The Hall-signal output current is impeded by an impedance of the first Hall element. The feedback current is coupled to counterpoise the Hall-signal output current at the input, and a voltage at the output is an amplified Hall output signal. A second amplifier generates a high-frequency portion output signal in response to a difference between the amplified Hall output signal and a Hall-signal output signal from a second Hall element. A filter reduces high-frequency content of the high-frequency portion output signal and generates an offset correction signal. A third amplifier generates a corrected Hall signal in response to a difference between the amplified Hall output signal and the offset correction signal.
    Type: Application
    Filed: April 9, 2020
    Publication date: July 30, 2020
    Inventors: Arup Polley, Srinath Ramaswamy, Baher S. Haroun, Rajarshi Mukhopadhyay
  • Patent number: 10712387
    Abstract: IEEE 1149.1 Test Access Ports (TAPs) may be utilized at both IC and intellectual property core design levels. TAPs serve as serial communication ports for accessing a variety of embedded circuitry within ICs and cores including; IEEE 1149.1 boundary scan circuitry, built in test circuitry, internal scan circuitry, IEEE 1149.4 mixed signal test circuitry, IEEE P5001 in-circuit emulation circuitry, and IEEE P1532 in-system programming circuitry. Selectable access to TAPs within ICs is desirable since in many instances being able to access only the desired TAP(s) leads to improvements in the way testing, emulation, and programming may be performed within an IC. A TAP linking module is described that allows TAPs embedded within an IC to be selectively accessed using 1149.1 instruction scan operations.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: July 14, 2020
    Assignee: Texas Instruments Incorporated
    Inventors: Lee D. Whetsel, Baher S. Haroun, Brian J. Lasher, Anjali Vij
  • Publication number: 20200212854
    Abstract: A sensor circuit includes a sensor array. The sensor array includes a sensor row that includes a first sensor cell, a second sensor cell, and an output stage of a distributed amplifier circuit. The first sensor cell includes a first photodetector, and a first preamplifier stage of the distributed amplifier circuit. The first preamplifier stage is coupled to the first photodetector, and is configured to amplify a signal received from the first photodetector. The second sensor cell includes a second photodetector, and a second preamplifier stage of the distributed amplifier circuit. The second preamplifier stage is coupled to the second photodetector, and is configured to amplify a signal received from the second photodetector. The output stage of the distributed amplifier circuit is coupled to the first and second sensor cells, and is configured to amplify a signal received from the first preamplifier stage and the second preamplifier stage.
    Type: Application
    Filed: December 26, 2018
    Publication date: July 2, 2020
    Inventors: Miaad SEYED ALIROTEH, Nirmal C. WARKE, David P. MAGEE, Ali KIAEI, Baher S. HAROUN, Ajay SINGHVI
  • Publication number: 20200212879
    Abstract: A pressure sensor apparatus is disclosed. The pressure sensor apparatus includes a bulk acoustic wave (BAW) die having a die interface side and a pressure contact side, a sensor BAW resonator and a reference BAW resonator disposed on the die interface side of the BAW die, a control circuit die coupled to the die interface side of the BAW die via an attachment layer, and an extended opening on the pressure contact side that extends into a depth of the BAW die and is generally aligned with the sensor BAW resonator, the extended opening being configured to translate an external pressure on the pressure contact side onto the sensor BAW resonator.
    Type: Application
    Filed: December 28, 2018
    Publication date: July 2, 2020
    Inventors: BICHOY BAHR, BAHER S. HAROUN, BENJAMIN STASSEN COOK
  • Patent number: 10698108
    Abstract: An optical distance measuring system includes a transmitter and a receiver. The transmitter is configured to generate a first optical waveform and direct the first optical waveform toward a first scan point within a field of view (FOV). The receiver is configured to receive the first optical waveform reflected off a first object within the FOV, direct the first optical waveform reflected off the first object to a first photodiode group of an array of photodiode elements, and determine a distance to the first object based on a time of flight of the first optical waveform from the transmitter to the first object and back to the receiver.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: June 30, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: David P. Magee, Nirmal C. Warke, Baher S. Haroun
  • Patent number: 10698066
    Abstract: In described examples, a Hall effect sensor includes a primary Hall effect sensor element and an auxiliary Hall effect sensor element. A known magnetic field is applied to the auxiliary Hall effect sensor to produce an auxiliary Hall voltage used in a feedback loop to control the bias current of the auxiliary Hall effect sensor to maintain the auxiliary Hall voltage approximately constant over a range of temperature and other factors. A bias current for the primary Hall effect sensor is controlled to track the bias current of the auxiliary Hall effect sensor to maintain the sensitivity of the primary Hall effect sensor approximately constant over the same range of temperature and other factors.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: June 30, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Arup Polley, Srinath Ramaswamy, Baher S. Haroun
  • Patent number: 10690756
    Abstract: Described examples include an integrated circuit that includes an encoder configured to modulate a driving signal for an optical transmitter with a plurality of encoded pulses corresponding to a code, in which the driving signal is transmitted to the optical transmitter periodically. The integrated circuit also includes a demodulator configured to receive a received signal from an optical receiver that is configured to receive a reflection of light transmitted by the optical transmitter off an object, the demodulator configured to discriminate the plurality of encoded pulses in the received signal and estimate a distance of the object.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: June 23, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Nirmal C. Warke, David P. Magee, Baher S. Haroun
  • Publication number: 20200191867
    Abstract: This disclosure describes a novel method and apparatus for testing TSVs within a semiconductor device. According to embodiments illustrated and described in the disclosure, a TSV may be tested by stimulating and measuring a response from a first end of a TSV while the second end of the TSV held at ground potential. Multiple TSVs within the semiconductor device may be tested in parallel to reduce the TSV testing time according to the disclosure.
    Type: Application
    Filed: February 20, 2020
    Publication date: June 18, 2020
    Inventors: Lee D. Whetsel, Baher S. Haroun
  • Publication number: 20200182950
    Abstract: An amplifier includes a graphene Hall sensor (GHS). The GHS includes a graphene layer formed above a substrate, a dielectric structure formed above a channel portion of the graphene layer, and a conductive gate structure formed above at least a portion of the dielectric structure above the channel portion of the graphene layer for applying a gate voltage. The GHS also includes first and second conductive excitation contact structures coupled with corresponding first and second excitation portions of the graphene layer for applying at least one of the following to the channel portion of the graphene layer: a bias voltage; and a bias current. The GHS further includes first and second conductive sense contact structures coupled with corresponding first and second sense portions of the graphene layer. The amplifier also includes a current sense amplifier (CSA) coupled to the GHS. The CSA senses current output from the GHS.
    Type: Application
    Filed: October 18, 2019
    Publication date: June 11, 2020
    Inventors: Baher S. HAROUN, Arup POLLEY, Srinath M. RAMASWAMY
  • Patent number: 10622694
    Abstract: A system is provided for transmitting sub-terahertz electro-magnetic radio frequency (RF) signals using a dielectric waveguide (DWG) having a dielectric core member surrounded by dielectric cladding. Multiple radar signals may be generated by a radar module that is coupled to a vehicle. A set of DWG segments may be used to transport the radar signals to various launching structures placed in various locations of the vehicle.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: April 14, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Baher S. Haroun
  • Patent number: 10613204
    Abstract: Described example aspects include an integrated circuit includes a timing controller configured to select a selected time slot in a measurement period having a plurality of time slots and a transmit driver configured to provide a transmit signal in accordance with the selected time slot, in which the transmit signal is transmitted to an optical transmitter. The integrated circuit also includes a range estimator configured to receive a received signal after the selected time slot from an optical receiver that is configured to receive a reflection of light transmitted by the optical transmitter off an object, the range estimator configured to determine an estimated distance of the object based on the received signal.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: April 7, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Nirmal C. Warke, David P. Magee, Baher S. Haroun