Patents by Inventor Bai Nie
Bai Nie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240363995Abstract: Disclosed herein are antenna units, microelectronic assemblies, and communication devices that may enable RF chip-to-chip communications in a compact form factor. An example microelectronic assembly may include a microelectronic component (e.g., a package substrate, a circuit board, and interposer, or a die) and an antenna unit that may be separately fabricated and integrated in a recess in the microelectronic component, enabling increased degrees of design freedom and improved yield. An example antenna unit may include a glass core having a first face and an opposing second face, a tapered opening extending between the first face and the second face of the glass core, and a layer of an electrically conductive material on sidewalls of the opening, where the opening in the glass core lined with the layer of the electrically conductive material forms a horn antenna integrated in the glass core.Type: ApplicationFiled: April 25, 2023Publication date: October 31, 2024Applicant: Intel CorporationInventors: Bai Nie, Jeremy Ecton, Brandon C. Marin, Mohammad Mamunur Rahman
-
Publication number: 20240329333Abstract: Multi-die packages including both photonic and electric integrated circuit (IC) die interconnected to each other through a routing structure built-up on a glass substrate. A glass preform comprising an optical waveguide may also be attached to the routing structure. A plurality of electrical IC (EIC) die may be arrayed over the routing structure along with a plurality of photonic IC (PIC). Each PIC may be coupled to an optical waveguide within the glass preform. Conductive vias may extend through the glass substrate and be further coupled with a host substrate. The host substrate may comprise glass and an optical waveguide embedded within the glass. A vertical coupler may be attached to the host substrate to optically couple the host substrate to the optical waveguide within the glass preform of the multi-die package. Many of the multi-die packages may be arrayed over a routing structure on the host substrate.Type: ApplicationFiled: March 31, 2023Publication date: October 3, 2024Applicant: Intel CorporationInventors: Robert May, Bai Nie, Changhua Liu, Hiroki Tanaka, Kristof Darmawikarta, Lilia May, Shriya Seshadri, Srinivas Pietambaram, Tarek Ibrahim
-
Publication number: 20240312865Abstract: Methods, systems, apparatus, and articles of manufacture to improve reliability of vias in a glass substrate of an integrated circuit package are disclosed. An example integrated circuit (IC) package substrate includes a glass substrate, a via extending between first and second surfaces of the glass substrate, and a conductive material provided in the via, the conductive material including gallium and silver.Type: ApplicationFiled: March 13, 2023Publication date: September 19, 2024Inventors: Kyle Arrington, Bohan Shan, Haobo Chen, Bai Nie, Srinivas Pietambaram, Gang Duan, Ziyin Lin, Hongxia Feng, Yiqun Bai, Xiaoying Guo, Dingying Xu
-
Publication number: 20240243066Abstract: Embodiments include an electronic package with an embedded multi-interconnect bridge (EMIB) and methods of making such packages. Embodiments include a first layer, that is an organic material and a second layer disposed over the first layer. In an embodiment, a cavity is formed through the second layer to expose a first surface of the first layer. A bridge substrate is in the cavity and is supported by the first surface of the first layer. Embodiments include a first die over the second layer that is electrically coupled to a first contact on the bridge substrate, and a second die over the second layer that is electrically coupled to a second contact on the bridge substrate. In an embodiment the first die is electrically coupled to the second die by the bridge substrate.Type: ApplicationFiled: March 29, 2024Publication date: July 18, 2024Inventors: Kristof DARMAWIKARTA, Hiroki TANAKA, Robert MAY, Sameer PAITAL, Bai NIE, Jesse JONES, Chung Kwang Christopher TAN
-
Publication number: 20240219656Abstract: A semiconductor device and associated methods are disclosed. In one example, the electronic device includes a photonic die and a glass substrate. In selected examples, the semiconductor device includes one or more turning mirrors to direct an optical signal between the photonic die and the glass substrate. Configurations of turning mirrors are provided to improve signal integrity and manufacturability.Type: ApplicationFiled: December 28, 2022Publication date: July 4, 2024Applicant: Intel CorporationInventors: Ziyin Lin, Yiqun Bai, Bohan Shan, Kyle Jordan Arrington, Haobo Chen, Dingying Xu, Robert Alan May, Gang Duan, Bai Nie, Srinivas Venkata Ramanuja Pietambaram
-
Publication number: 20240222304Abstract: Methods and apparatus to reduce solder bump bridging between two substrates. An apparatus includes a first substrate including a first bump and a second bump spaced apart from the first bump, the first bump including a first base, the second bump including a second base; and a second substrate including a third bump and a fourth bump spaced apart from the third bump, the third bump including a third base, the fourth bump including a fourth base, the first base electrically coupled to the third base by first solder, the second base electrically coupled to the fourth base by second solder, the first solder having a first volume, the second solder having a second volume, the first volume less than the second volume.Type: ApplicationFiled: December 29, 2022Publication date: July 4, 2024Inventors: Bohan Shan, Jiaqi Wu, Haobo Chen, Srinivas Pietambaram, Bai Nie, Gang Duan, Kyle Arrington, Ziyin Lin, Hongxia Feng, Yiqun Bai, Xiaoying Guo, Dingying Xu
-
Publication number: 20240219654Abstract: A semiconductor device and associated methods are disclosed. In one example, the electronic device includes a photonic die and a glass substrate. In selected examples, the semiconductor device includes one or more turning mirrors to direct an optical signal between the photonic die and the glass substrate. Configurations of turning mirrors are provided to improve signal integrity and manufacturability.Type: ApplicationFiled: December 28, 2022Publication date: July 4, 2024Applicant: Intel CorporationInventors: Ziyin Lin, Yiqun Bai, Bohan Shan, Kyle Jordan Arrington, Haobo Chen, Dingying Xu, Robert Alan May, Gang Duan, Bai Nie, Srinivas Venkata Ramanuja Pietambaram
-
Publication number: 20240222238Abstract: An integrated circuit device substrate includes a glass substrate with a first major surface comprising a plateau region, a cavity region, and a wall between the plateau region and the cavity region. The first major surface includes thereon a first dielectric region, and the plateau region includes a plurality of conductive pillars. A second major surface of the glass substrate opposite the first major surface includes thereon a second dielectric layer, wherein the second dielectric layer includes at least one dielectric-free window underlying the cavity region.Type: ApplicationFiled: December 30, 2022Publication date: July 4, 2024Applicant: Intel CorporationInventors: Bohan Shan, Haobo Chen, Srinivas Venkata Ramanuja Pietambaram, Bai Nie, Gang Duan, Kyle Jordan Arrington, Ziyin Lin, Hongxia Feng, Yiqun Bai, Xiaoying Guo, Dingying Xu
-
Publication number: 20240222243Abstract: An integrated circuit device substrate includes a first glass layer with a redistribution layer mounting region and an integrated circuit device mounting region, wherein a first major surface of the first glass layer is overlain by a first dielectric layer, and wherein the first glass layer includes a first plurality of conductive pillars. A second glass layer is on the redistribution layer mounting region on the first glass layer, wherein the second glass layer includes a second dielectric layer on a second major surface thereof, and wherein the second dielectric layer is bonded to the first dielectric layer on the first major surface of the first glass layer, the second glass layer including a second plurality of conductive pillars electrically interconnected with the first plurality of conductive pillars in the first glass layer.Type: ApplicationFiled: December 30, 2022Publication date: July 4, 2024Applicant: Intel CorporationInventors: Bohan Shan, Haobo Chen, Bai Nie, Srinivas Venkata Ramanuja Pietambaram, Gang Duan, Kyle Jordan Arrington, Ziyin Lin, Hongxia Feng, Yiqun Bai, Xiaoying Guo, Dingying Xu, Kristof Darmawikarta
-
Publication number: 20240222301Abstract: Methods and apparatus for optical thermal treatment in semiconductor packages are disclosed. A disclosed example integrated circuit (IC) package includes a dielectric substrate, an interconnect associated with the dielectric substrate, and light absorption material proximate or surrounding the interconnect, the light absorption material to increase in temperature in response to being exposed to a pulsed light for thermal treatment corresponding to the IC package.Type: ApplicationFiled: December 28, 2022Publication date: July 4, 2024Inventors: Bohan Shan, Hongxia Feng, Haobo Chen, Srinivas Pietambaram, Bai Nie, Gang Duan, Kyle Arrington, Ziyin Lin, Yiqun Bai, Xiaoying Guo, Dingying Xu, Sairam Agraharam, Ashay Dani, Eric J. M. Moret, Tarek Ibrahim
-
Publication number: 20240219655Abstract: A semiconductor device and associated methods are disclosed. In one example, the electronic device includes a photonic die and a glass substrate. In selected examples, the semiconductor device includes one or more turning mirrors to direct an optical signal between the photonic die and the glass substrate. Configurations of turning mirrors are provided to improve signal integrity and manufacturability.Type: ApplicationFiled: December 28, 2022Publication date: July 4, 2024Applicant: Intel CorporationInventors: Haobo Chen, Bohan Shan, Bai Nie, Brandon C. Marin, Dingying Xu, Gang Duan, Hongxia Feng, Jeremy D. Ecton, Kristof Darmawikarta, Kyle Jordan Arrington, Srinivas Venkata Ramanuja Pietambaram, Xiaoying Guo, Yiqun Bai, Ziyin Lin
-
Publication number: 20240222136Abstract: Mechanical or chemical processes can form roughened surfaces which can be used for coupling layers of electrical systems such as when forming dies, substrates, computer chips or the like that, when subjected to high stress, are robust enough to remain coupled together.Type: ApplicationFiled: December 29, 2022Publication date: July 4, 2024Inventors: Bohan Shan, Haobo Chen, Srinivas Venkata Ramanuja Pietambaram, Hongxia Feng, Gang Duan, Xiaoying Guo, Ashay A. Dani, Yiqun Bai, Dingying Xu, Bai Nie, Kyle Jordan Arrington, Wei Wei, Ziyin Lin
-
Publication number: 20240219660Abstract: A semiconductor device and associated methods are disclosed. In one example, the electronic device includes a photonic die and a glass substrate. In selected examples, the semiconductor device includes one or more turning mirrors to direct an optical signal between the photonic die and the glass substrate. Configurations of turning mirrors are provided to improve signal integrity and manufacturability.Type: ApplicationFiled: December 28, 2022Publication date: July 4, 2024Applicant: Intel CorporationInventors: Bohan Shan, Hongxia Feng, Haobo Chen, Yiqun Bai, Dingying Xu, Eric J.M. Moret, Robert Alan May, Srinivas Venkata Ramanuja Pietambaram, Tarek A. Ibrahim, Gang Duan, Xiaoying Guo, Ziyin Lin, Bai Nie, Kyle Jordan Arrington, Bin Mu
-
Publication number: 20240219659Abstract: A semiconductor device and associated methods are disclosed. In one example, the electronic device includes a photonic die and a glass substrate. In selected examples, the semiconductor device includes one or more turning mirrors to direct an optical signal between the photonic die and the glass substrate. Configurations of turning mirrors are provided to improve signal integrity and manufacturability.Type: ApplicationFiled: December 28, 2022Publication date: July 4, 2024Applicant: Intel CorporationInventors: Ziyin Lin, Yiqun Bai, Bohan Shan, Kyle Jordan Arrington, Haobo Chen, Dingying Xu, Robert Alan May, Gang Duan, Bai Nie, Srinivas Venkata Ramanuja Pietambaram
-
Publication number: 20240222257Abstract: A substrate for an electronic system includes a glass core layer. The glass core layer includes a first surface and a second surface opposite the first surface; and at least one through-glass via (TGV) extending through the glass core layer from the first surface to the second surface. The TGV includes an opening filled with an electrically conductive material; and a via liner including a sidewall material disposed on a sidewall of the opening between the glass of the glass core layer and the electrically conductive material, wherein the sidewall material includes carbon.Type: ApplicationFiled: December 28, 2022Publication date: July 4, 2024Inventors: Bohan Shan, Haobo Chen, Srinivas Venkata Ramanuja Pietambaram, Hongxia Feng, Gang Duan, Xiaoying Guo, Yiqun Bai, Dingying Xu, Bai Nie, Kyle Jordan Arrington, Ziyin Lin, Rahul N. Manepalli, Brandon C. Marin, Jeremy D. Ecton
-
Publication number: 20240219653Abstract: An electronic device and associated methods are disclosed. In one example, the electronic device includes a photonic die and at least one optical fiber. Devices and methods are shown that include an optical coupler and one or more correction regions to align a beam between the photonic die and the optical fiber.Type: ApplicationFiled: December 30, 2022Publication date: July 4, 2024Inventors: Yonggang Li, Bai Nie
-
Publication number: 20240222345Abstract: An apparatus is provided which comprises: a plurality of interconnect layers within a substrate, a layer of organic dielectric material over the plurality of interconnect layers, copper pads within the layer of organic dielectric material, a first integrated circuit device copper-to-copper bonded with the copper pads, inorganic dielectric material over the layer of organic dielectric material, the inorganic dielectric material embedding the first integrated circuit device, and the inorganic dielectric material extending across a width of the substrate, and a second integrated circuit device coupled with a substrate surface above the inorganic dielectric material. Other embodiments are also disclosed and claimed.Type: ApplicationFiled: December 29, 2022Publication date: July 4, 2024Applicant: Intel CorporationInventors: Bohan Shan, Haobo Chen, Bai Nie, Srinivas Pietambaram, Gang Duan, Kyle Arrington, Ziyin Lin, Hongxia Feng, Yiqun Bai, Xiaoying Guo, Dingying Xu, Kristof Darmawikarta
-
Publication number: 20240222210Abstract: An integrated circuit device substrate includes a first glass layer, a second glass layer, and a dielectric interface layer between the first glass layer and the second glass layer. A plurality of conductive pillars extend through the first glass layer, the dielectric layer and the second glass layer, wherein the conductive pillars taper from a first diameter in the dielectric layer to a second diameter in the first glass layer and the second glass layer, and wherein the first diameter is greater than the second diameter.Type: ApplicationFiled: December 30, 2022Publication date: July 4, 2024Applicant: Intel CorporationInventors: Bohan Shan, Haobo Chen, Bai Nie, Srinivas Venkata Ramanuja Pietambaram, Gang Duan, Kyle Jordan Arrington, Ziyin Lin, Hongxia Feng, Yiqun Bai, Xiaoying Guo, Dingying Xu, Kristof Darmawikarta
-
Publication number: 20240219629Abstract: Methods, apparatus, systems, and articles of manufacture are disclosed utilizing photonic integrated circuits with glass cores. An example apparatus comprises a primary package substrate including a glass core and first contacts along an outer surface of the primary package substrate, a photonic integrated circuit (PIC) within the primary package substrate adjacent a surface of the glass core, and a secondary package substrate supporting a semiconductor die on a first side of the secondary package substrate, the secondary package substrate including second contacts on a second side of the secondary package substrate, the first contacts electrically coupled to the second contacts.Type: ApplicationFiled: December 30, 2022Publication date: July 4, 2024Inventors: Changhua Liu, Robert May, Bai Nie
-
Publication number: 20240222283Abstract: Methods and apparatus to prevent over-etch in semiconductor packages are disclosed. A disclosed example semiconductor package includes at least one dielectric layer, an interconnect extending at least partially through or from the at least one dielectric layer, and a material on at least a portion of the interconnect, wherein the material comprises at least one of silicon or titanium.Type: ApplicationFiled: December 28, 2022Publication date: July 4, 2024Inventors: Hongxia Feng, Bohan Shan, Bai Nie, Xiaoxuan Sun, Holly Sawyer, Tarek Ibrahim, Adwait Telang, Dingying Xu, Leonel Arana, Xiaoying Guo, Ashay Dani, Sairam Agraharam, Haobo Chen, Srinivas Pietambaram, Gang Duan