Patents by Inventor Baigui Bian

Baigui Bian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230321407
    Abstract: An expandable delivery sheath includes an elastic outer tubular layer and an inner tubular layer. The inner tubular layer include a thick wall portion integrally connected to a thin wall portion. The thin wall portion can include longitudinal reinforcing members/rods that facilitate unfolding during the passage of the implant, thus decreasing the push force and increasing the consistency of the push force. The inner tubular layer can have a non-expanded or folded condition wherein the thin wall portion folds onto an outer surface of the thick wall portion under urging of the elastic outer tubular layer. When an implant passes therethrough, the outer tubular layer stretches and the inner tubular layer unfolds into an expanded lumen diameter. Once the implant passes, the outer tubular layer again urges the inner tubular layer into the non-expanded condition with the sheath reassuming its smaller profile.
    Type: Application
    Filed: June 7, 2023
    Publication date: October 12, 2023
    Inventors: Pu Zhou, Erik Bulman, Baigui Bian
  • Patent number: 11707605
    Abstract: An expandable delivery sheath includes an elastic outer tubular layer and an inner tubular layer. The inner tubular layer include a thick wall portion integrally connected to a thin wall portion. The thin wall portion can include longitudinal reinforcing members/rods that facilitate unfolding during the passage of the implant, thus decreasing the push force and increasing the consistency of the push force. The inner tubular layer can have a non-expanded or folded condition wherein the thin wall portion folds onto an outer surface of the thick wall portion under urging of the elastic outer tubular layer. When an implant passes therethrough, the outer tubular layer stretches and the inner tubular layer unfolds into an expanded lumen diameter. Once the implant passes, the outer tubular layer again urges the inner tubular layer into the non-expanded condition with the sheath reassuming its smaller profile.
    Type: Grant
    Filed: October 12, 2020
    Date of Patent: July 25, 2023
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Pu Zhou, Erik Bulman, Baigui Bian
  • Publication number: 20230149166
    Abstract: The methods and devices disclosed herein promote temporal control of balloon inflation patterns. The devices include a covering for a portion of the balloon that compresses the balloon portion during the inflation process. This enables the distal portion of a balloon to be inflated prior to the proximal portion of a balloon, creating a tapered shape at lower inflation pressures. This is especially useful during transvascular implantation procedures, as it prevents dislodgement of an implant mounted on the balloon. As inflation continues, pressure exerted on the balloon by the covering is overcome such that the proximal region of the balloon inflates, forming a shape with generally straighter sides than the tapered shape, thereby expanding the cardiovascular device.
    Type: Application
    Filed: January 6, 2023
    Publication date: May 18, 2023
    Inventors: Yidong M. Zhu, Pu Zhou, Erik Bulman, Baigui Bian
  • Publication number: 20230017997
    Abstract: Disclosed herein are designs for improved inflatable structures for use during minimally invasive cardiovascular procedures. These inflatable structures facilitate the perfusion of blood through an anatomical structure, such as a heart valve, during the cardiovascular procedure. The inflatable structures are formed of a plurality of balloons arranged radially around a central location. The plurality of balloons form a lumen through which blood flows. Each balloon of the plurality is shaped or configured to stabilize the adjacent balloons, limiting their movement relative to each other. For example, some embodiments can feature balloons with a keystone shape that limits movement of the balloons inward toward the lumen. Some implementations can also include a support coil running through the lumen. The support coil holds enables the lumen to be open to perfusion even in the early stages of balloon inflation.
    Type: Application
    Filed: September 29, 2022
    Publication date: January 19, 2023
    Inventors: Yidong M. Zhu, Erik Bulman, Baigui Bian, Sam Sok, Pu Zhou
  • Patent number: 11547561
    Abstract: The methods and devices disclosed herein promote temporal control of balloon inflation patterns. The devices include a covering for a portion of the balloon that compresses the balloon portion during the inflation process. This enables the distal portion of a balloon to be inflated prior to the proximal portion of a balloon, creating a tapered shape at lower inflation pressures. This is especially useful during transvascular implantation procedures, as it prevents dislodgement of an implant mounted on the balloon. As inflation continues, pressure exerted on the balloon by the covering is overcome such that the proximal region of the balloon inflates, forming a shape with generally straighter sides than the tapered shape, thereby expanding the cardiovascular device.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: January 10, 2023
    Assignee: Edwards Lifesciences Corporation
    Inventors: Yidong M. Zhu, Pu Zhou, Erik Bulman, Baigui Bian
  • Publication number: 20220401216
    Abstract: The expandable sheaths disclosed herein include an elastic outer tubular layer and a multisegmented inner tubular layer that includes at least two coextruded segments having different durometers and different coefficients of friction. The inner tubular layer further includes a thick wall portion integrally connected to a thin wall portion. The thin wall portion has a lower durometer than the thick wall portion. The thick wall portion has a first and second longitudinally extending end, and the thin wall portion extends between the first and second longitudinally extending ends. The elastic outer tubular layer and the inner tubular layer are radially movable between a non-expanded state, where the elastic outer tubular layer urges the first longitudinally extending end under the second longitudinally extending end, and an expanded state, where the first and second longitudinally extending ends of the inner tubular layer expand apart with the thin wall portion extending therebetween.
    Type: Application
    Filed: August 25, 2022
    Publication date: December 22, 2022
    Inventors: Baigui Bian, Erik Bulman, Timothy A. Geiser
  • Publication number: 20220379094
    Abstract: A delivery sheath includes an outer tubular layer and an initially folded inner tubular layer. When an implant passes therethrough, the outer tubular layer expands and the inner tubular layer unfolds into an expanded lumen diameter. The sheath may also include selectively placed longitudinal support rods that mediate friction between the inner and outer tubular layers to facilitate easy expansion, thereby reducing the push force needed to advance the implant through the sheath's lumen.
    Type: Application
    Filed: August 8, 2022
    Publication date: December 1, 2022
    Applicant: Edwards Lifesciences Corporation
    Inventors: Pu Zhou, Erik Bulman, Timothy A. Geiser, Michael G. Valdez, Yidong M. Zhu, Baigui Bian, Sonny Tran, Richard D. White, Thanh Huy Le, Tung T. Le, Alpana Kiran Gowdar, Yong Gao, David Delon Williams
  • Patent number: 11458015
    Abstract: Disclosed herein are designs for improved inflatable structures for use during minimally invasive cardiovascular procedures. These inflatable structures facilitate the perfusion of blood through an anatomical structure, such as a heart valve, during the cardiovascular procedure. The inflatable structures are formed of a plurality of balloons arranged radially around a central location. The plurality of balloons form a lumen through which blood flows. Each balloon of the plurality is shaped or configured to stabilize the adjacent balloons, limiting their movement relative to each other. For example, some embodiments can feature balloons with a keystone shape that limits movement of the balloons inward toward the lumen. Some implementations can also include a support coil running through the lumen. The support coil holds enables the lumen to be open to perfusion even in the early stages of balloon inflation.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: October 4, 2022
    Assignee: Edwards Lifesciences Corporation
    Inventors: Yidong M. Zhu, Erik Bulman, Baigui Bian, Sam Sok, Pu Zhou
  • Patent number: 11420026
    Abstract: A delivery sheath includes an outer tubular layer and an initially folded inner tubular layer. When an implant passes therethrough, the outer tubular layer expands and the inner tubular layer unfolds into an expanded lumen diameter. The sheath may also include selectively placed longitudinal support rods that mediate friction between the inner and outer tubular layers to facilitate easy expansion, thereby reducing the push force needed to advance the implant through the sheath's lumen.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: August 23, 2022
    Assignee: Edwards Lifesciences Corporation
    Inventors: Pu Zhou, Erik Bulman, Timothy A. Geiser, Michael G. Valdez, Yidong M. Zhu, Baigui Bian, Sonny Tran, Richard D. White, Thanh Huy Le, Tung T. Le, Alpana Kiran Gowdar, Yong Gao, David Delon Williams
  • Patent number: 11406796
    Abstract: A delivery sheath includes an outer tubular layer and an initially folded inner tubular layer. When an implant passes therethrough, the outer tubular layer expands and the inner tubular layer unfolds into an expanded lumen diameter. The sheath may also include selectively placed longitudinal support rods that mediate friction between the inner and outer tubular layers to facilitate easy expansion, thereby reducing the push force needed to advance the implant through the sheath's lumen.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: August 9, 2022
    Assignee: Edwards Lifesciences Corporation
    Inventors: Pu Zhou, Erik Bulman, Timothy A. Geiser, Michael G. Valdez, Yidong M. Zhu, Baigui Bian, Sonny Tran, Richard D. White, Thanh Huy Le, Tung T. Le, Alpana Kiran Gowdar, Yong Gao, David Delon Williams
  • Publication number: 20210023344
    Abstract: An expandable delivery sheath includes an elastic outer tubular layer and an inner tubular layer. The inner tubular layer include a thick wall portion integrally connected to a thin wall portion. The thin wall portion can include longitudinal reinforcing members/rods that facilitate unfolding during the passage of the implant, thus decreasing the push force and increasing the consistency of the push force. The inner tubular layer can have a non-expanded or folded condition wherein the thin wall portion folds onto an outer surface of the thick wall portion under urging of the elastic outer tubular layer. When an implant passes therethrough, the outer tubular layer stretches and the inner tubular layer unfolds into an expanded lumen diameter. Once the implant passes, the outer tubular layer again urges the inner tubular layer into the non-expanded condition with the sheath reassuming its smaller profile.
    Type: Application
    Filed: October 12, 2020
    Publication date: January 28, 2021
    Inventors: Pu Zhou, Erik Bulman, Baigui Bian
  • Publication number: 20200375736
    Abstract: The methods and devices disclosed herein promote temporal control of balloon inflation patterns. The devices include a covering for a portion of the balloon that compresses the balloon portion during the inflation process. This enables the distal portion of a balloon to be inflated prior to the proximal portion of a balloon, creating a tapered shape at lower inflation pressures. This is especially useful during transvascular implantation procedures, as it prevents dislodgement of an implant mounted on the balloon. As inflation continues, pressure exerted on the balloon by the covering is overcome such that the proximal region of the balloon inflates, forming a shape with generally straighter sides than the tapered shape, thereby expanding the cardiovascular device.
    Type: Application
    Filed: August 18, 2020
    Publication date: December 3, 2020
    Applicant: Edwards Lifesciences Corporation
    Inventors: Yidong M. Zhu, Pu Zhou, Erik Bulman, Baigui Bian
  • Publication number: 20200353221
    Abstract: A delivery sheath includes an outer tubular layer and an initially folded inner tubular layer. When an implant passes therethrough, the outer tubular layer expands and the inner tubular layer unfolds into an expanded lumen diameter. The sheath may also include selectively placed longitudinal support rods that mediate friction between the inner and outer tubular layers to facilitate easy expansion, thereby reducing the push force needed to advance the implant through the sheath's lumen.
    Type: Application
    Filed: July 23, 2020
    Publication date: November 12, 2020
    Inventors: Pu Zhou, Erik Bulman, Timothy A. Geiser, Michael G. Valdez, Yidong M. Zhu, Baigui Bian, Sonny Tran, Richard D. White, Thanh Huy Le, Tung T. Le, Alpana Kiran Gowdar
  • Patent number: 10799685
    Abstract: An expandable delivery sheath includes an elastic outer tubular layer and an inner tubular layer. The inner tubular layer include a thick wall portion integrally connected to a thin wall portion. The thin wall portion can include longitudinal reinforcing members/rods that facilitate unfolding during the passage of the implant, thus decreasing the push force and increasing the consistency of the push force. The inner tubular layer can have a non-expanded or folded condition wherein the thin wall portion folds onto an outer surface of the thick wall portion under urging of the elastic outer tubular layer. When an implant passes therethrough, the outer tubular layer stretches and the inner tubular layer unfolds into an expanded lumen diameter. Once the implant passes, the outer tubular layer again urges the inner tubular layer into the non-expanded condition with the sheath reassuming its smaller profile.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: October 13, 2020
    Assignee: Edwards Lifesciences Corporation
    Inventors: Pu Zhou, Erik Bulman, Baigui Bian
  • Patent number: 10792471
    Abstract: A delivery sheath includes an elastic outer tubular layer and an inner tubular layer having a thick wall portion integrally connected to a thin wall portion. The inner tubular layer can have a compressed or folded condition wherein the thin wall portion folds onto an outer surface of the thick wall portion under urging of the elastic outer tubular layer. When an implant passes therethrough, the outer tubular layer stretches and the inner tubular layer unfolds into an expanded lumen diameter. Once the implant passes, the outer tubular layer again urges the inner tubular layer into the compressed condition with the sheath reassuming its smaller profile. The sheath may also include selectively placed longitudinal rods that mediate friction between the inner and outer tubular layers to facilitate easy expansion and collapse, thereby reducing the push force needed to advance the implant through the sheath's lumen.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: October 6, 2020
    Assignee: Edwards Lifesciences Corporation
    Inventors: Pu Zhou, Erik Bulman, Timothy A. Geiser, Michael G. Valdez, Yidong M. Zhu, Baigui Bian, Sonny Tran, Richard D. White, Thanh Huy Le, Tung T. Le, Alpana Kiran Gowdar
  • Patent number: 10751176
    Abstract: The methods and devices disclosed herein promote temporal control of balloon inflation patterns. The devices include a covering for a portion of the balloon that compresses the balloon portion during the inflation process. This enables the distal portion of a balloon to be inflated prior to the proximal portion of a balloon, creating a tapered shape at lower inflation pressures. This is especially useful during transvascular implantation procedures, as it prevents dislodgement of an implant mounted on the balloon. As inflation continues, pressure exerted on the balloon by the covering is overcome such that the proximal region of the balloon inflates, forming a shape with generally straighter sides than the tapered shape, thereby expanding the cardiovascular device.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: August 25, 2020
    Assignee: Edwards Lifesciences Corporation
    Inventors: Yidong M. Zhu, PU Zhou, Erik Bulman, Baigui Bian
  • Patent number: 10716919
    Abstract: A delivery sheath includes an outer tubular layer and an initially folded inner tubular layer. When an implant passes therethrough, the outer tubular layer expands and the inner tubular layer unfolds into an expanded lumen diameter. The sheath may also include selectively placed longitudinal support rods that mediate friction between the inner and outer tubular layers to facilitate easy expansion, thereby reducing the push force needed to advance the implant through the sheath's lumen.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: July 21, 2020
    Assignee: Edwards Lifesciences Corporation
    Inventors: Pu Zhou, Erik Bulman, Timothy A. Geiser, Michael G. Valdez, Yidong M. Zhu, Baigui Bian, Sonny Tran, Richard D. White, Thanh Huy Le, Tung T. Le, Alpana K. Gowdar, Yong Gao, David D. Williams
  • Publication number: 20200179116
    Abstract: Disclosed herein are designs for improved inflatable structures for use during minimally invasive cardiovascular procedures. These inflatable structures facilitate the perfusion of blood through an anatomical structure, such as a heart valve, during the cardiovascular procedure. The inflatable structures are formed of a plurality of balloons arranged radially around a central location. The plurality of balloons form a lumen through which blood flows. Each balloon of the plurality is shaped or configured to stabilize the adjacent balloons, limiting their movement relative to each other. For example, some embodiments can feature balloons with a keystone shape that limits movement of the balloons inward toward the lumen. Some implementations can also include a support coil running through the lumen. The support coil holds enables the lumen to be open to perfusion even in the early stages of balloon inflation.
    Type: Application
    Filed: February 14, 2020
    Publication date: June 11, 2020
    Inventors: Yidong M. Zhu, Erik Bulman, Baigui Bian, Sam Sok, Pu Zhou
  • Publication number: 20200108231
    Abstract: A delivery sheath includes an outer tubular layer and an initially folded inner tubular layer. When an implant passes therethrough, the outer tubular layer expands and the inner tubular layer unfolds into an expanded lumen diameter. The sheath may also include selectively placed longitudinal support rods that mediate friction between the inner and outer tubular layers to facilitate easy expansion, thereby reducing the push force needed to advance the implant through the sheath's lumen.
    Type: Application
    Filed: August 26, 2019
    Publication date: April 9, 2020
    Inventors: Pu Zhou, Erik Bulman, Timothy A. Geiser, Michael G. Valdez, Yidong M. Zhu, Baigui Bian, Sonny Tran, Richard D. White, Thanh Huy Le, Tung T. Le, Alpana Kiran Gowdar, Yong Gao, David Delon Williams
  • Patent number: 10561496
    Abstract: Disclosed herein are designs for improved inflatable structures for use during minimally invasive cardiovascular procedures. These inflatable structures facilitate the perfusion of blood through an anatomical structure, such as a heart valve, during the cardiovascular procedure. The inflatable structures are formed of a plurality of balloons arranged radially around a central location. The plurality of balloons form a lumen through which blood flows. Each balloon of the plurality is shaped or configured to stabilize the adjacent balloons, limiting their movement relative to each other. For example, some embodiments can feature balloons with a keystone shape that limits movement of the balloons inward toward the lumen. Some implementations can also include a support coil running through the lumen. The support coil holds enables the lumen to be open to perfusion even in the early stages of balloon inflation.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: February 18, 2020
    Assignee: Edwards Lifesciences Corporation
    Inventors: Yidong M. Zhu, Erik Bulman, Baigui Bian, Sam Sok, Pu Zhou