Patents by Inventor Baixin Qian

Baixin Qian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10490817
    Abstract: The present invention relates to nanostructured materials (including nanowires) for use in batteries. Exemplary materials include carbon-comprising, Si-based nanostructures, nanostructured materials disposed on carbon-based substrates, and nanostructures comprising nanoscale scaffolds. The present invention also provides methods of preparing battery electrodes, and batteries, using the nanostructured materials.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: November 26, 2019
    Assignee: OneD Material LLC
    Inventors: Yimin Zhu, Jay L. Goldman, Jason Hartlove, Hans Jurgen Hofler, Baixin Qian, Vijendra Sahi, Ionel C. Stefan, David P. Stumbo
  • Patent number: 10266409
    Abstract: Methods for producing nanostructures, particularly Group III-V semiconductor nanostructures, are provided. The methods include use of novel Group III and/or Group V precursors, novel surfactants, oxide acceptors, high temperature, and/or stable co-products. Related compositions are also described. Methods and compositions for producing Group III inorganic compounds that can be used as precursors for nanostructure synthesis are provided. Methods for increasing the yield of nanostructures from a synthesis reaction by removal of a vaporous by-product are also described.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: April 23, 2019
    Assignee: Nanosys, Inc.
    Inventors: Erik C. Scher, Mihai A. Buretea, William P. Freeman, Joel Gamoras, Baixin Qian, Jeffrey A. Whiteford
  • Patent number: 9688534
    Abstract: Methods for producing nanostructures, particularly Group III-V semiconductor nanostructures, are provided. The methods include use of novel Group III and/or Group V precursors, novel surfactants, oxide acceptors, high temperature, and/or stable co-products. Related compositions are also described. Methods and compositions for producing Group III inorganic compounds that can be used as precursors for nanostructure synthesis are provided. Methods for increasing the yield of nanostructures from a synthesis reaction by removal of a vaporous by-product are also described.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: June 27, 2017
    Assignee: NANOSYS, INC.
    Inventors: Erik C. Scher, Mihai A. Buretea, William P. Freeman, Joel Gamoras, Baixin Qian, Jeffrey A. Whiteford
  • Patent number: 9469538
    Abstract: Methods for producing nanostructures, particularly Group III-V semiconductor nanostructures, are provided. The methods include use of novel Group III and/or Group V precursors, novel surfactants, oxide acceptors, high temperature, and/or stable co-products. Related compositions are also described. Methods and compositions for producing Group III inorganic compounds that can be used as precursors for nanostructure synthesis are provided. Methods for increasing the yield of nanostructures from a synthesis reaction by removal of a vaporous by-product are also described.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: October 18, 2016
    Assignee: Nanosys, Inc.
    Inventors: Erik C. Scher, Mihai A. Buretea, William P. Freeman, Joel Gamoras, Baixin Qian, Jeffrey A. Whiteford
  • Patent number: 9040208
    Abstract: A catalyst layer for a fuel cell membrane electrode assembly includes a plurality of agglomerates, adjacent ones of the plurality of agglomerates contacting with each other with pores provided between said adjacent ones of the plurality of agglomerates, each of the plurality of agglomerates being formed by packing a plurality of catalysts each consisting of noble metal fine particles supported on a fiber-like support material, adjacent ones of the plurality of catalysts contacting with each other with pores provided between said adjacent ones of the plurality of catalysts, and each of the plurality of catalysts contacting with a plurality of catalysts other than said each catalyst at a plurality of contact points. This allows providing a catalyst layer, a fuel cell membrane electrode assembly, and a fuel cell, each of which has compact size and excellent power generation performance, and a method for producing the same.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: May 26, 2015
    Assignees: OneD Material LLC, Sharp Kabushiki Kaisha
    Inventors: Masashi Muraoka, Kohtaroh Saitoh, Hirotaka Mizuhata, Takenori Onishi, Yimin Zhu, Ionel C. Stefan, Baixin Qian, Jay Goldman
  • Patent number: 9006133
    Abstract: The present invention relates to electrochemical catalyst particles, including nanoparticles, which can be used membrane electrode assemblies and in fuel cells. In exemplary embodiments, the present invention provides electrochemical catalysts supported by various materials. Suitably the catalysts have an atomic ratio of oxygen to a metal in the nanoparticle of about 3 to about 6.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: April 14, 2015
    Assignees: OneD Material LLC, Sharp Kabushiki Kaisha
    Inventors: Yimin Zhu, Jay L. Goldman, Baixin Qian, Ionel C. Stefan, Mutsuko Komoda, Hirotaka Mizuhata, Takenori Onishi
  • Patent number: 8884273
    Abstract: Methods for producing nanostructures, particularly Group III-V semiconductor nanostructures, are provided. The methods include use of novel Group III and/or Group V precursors, novel surfactants, oxide acceptors, high temperature, and/or stable co-products. Related compositions are also described. Methods and compositions for producing Group III inorganic compounds that can be used as precursors for nanostructure synthesis are provided. Methods for increasing the yield of nanostructures from a synthesis reaction by removal of a vaporous by-product are also described.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: November 11, 2014
    Assignee: Nanosys, Inc.
    Inventors: Erik C. Scher, Mihai A. Buretea, William P. Freeman, Joel Gamoras, Baixin Qian, Jeffery A. Whiteford
  • Patent number: 8592037
    Abstract: Compositions containing a nanostructure, preferably a nanocrystal, are provided. The nanostructures have ligands bound to the surface. Such ligands are preferably siloxane containing ligands having at least one —COON group, although ligands having various ?P?O groups are also contemplated. The nanostructures can be embedded into a polymer such as a silicone polymer.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: November 26, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: J. Wallace Parce, Paul Bernatis, Robert Dubrow, William P Freeman, Joel Gamoras, Shihai Kan, Andreas Meisel, Baixin Qian, Jeffery A Whiteford, Jonathan Ziebarth
  • Patent number: 8425803
    Abstract: Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: April 23, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: J. Wallace Parce, Paul Bernatis, Robert Dubrow, William P. Freeman, Joel Gamoras, Shihai Kan, Andreas Meisel, Baixin Qian, Jeffery A. Whiteford, Jonathan Ziebarth
  • Patent number: 8278011
    Abstract: The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: October 2, 2012
    Assignee: Nanosys, Inc.
    Inventors: Yimin Zhu, Jay L. Goldman, Baixin Qian, Ionel C. Stefan
  • Publication number: 20120068118
    Abstract: Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided.
    Type: Application
    Filed: October 20, 2011
    Publication date: March 22, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: J. Wallace Parce, Paul Bernatis, Robert Dubrow, William P. Freeman, Joel Gamoras, Shihai Kan, Andreas Meisel, Baixin Qian, Jeffery A. Whiteford, Jonathan Ziebarth
  • Publication number: 20120021331
    Abstract: The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.
    Type: Application
    Filed: February 23, 2009
    Publication date: January 26, 2012
    Applicant: NANOSYS, Inc.
    Inventors: Yimin ZHU, Jay L. GOLDMAN, Baixin QIAN, Ionel C. STEFAN
  • Patent number: 8088483
    Abstract: Methods for producing Group 10 metal nanostructures are provided. The methods involve novel precursors, novel surfactants, or novel precursor-surfactant combinations. Compositions related to the methods are also featured.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: January 3, 2012
    Assignee: Nanosys, Inc.
    Inventors: Jeffery A. Whiteford, Mihai A. Buretea, William P. Freeman, J. Wallace Parce, Baixin Qian, Erik C. Scher
  • Patent number: 8062967
    Abstract: Methods for producing nanostructures, particularly Group III-V semiconductor nanostructures, are provided. The methods include use of novel Group III and/or Group V precursors, novel surfactants, oxide acceptors, high temperature, and/or stable co-products. Related compositions are also described. Methods and compositions for producing Group III inorganic compounds that can be used as precursors for nanostructure synthesis are provided. Methods for increasing the yield of nanostructures from a synthesis reaction by removal of a vaporous by-product are also described.
    Type: Grant
    Filed: June 1, 2009
    Date of Patent: November 22, 2011
    Assignee: Nanosys, Inc.
    Inventors: Erik C. Scher, Mihai A. Buretea, William P. Freeman, Joel Gamoras, Baixin Qian, Jeffery A. Whiteford
  • Publication number: 20110275005
    Abstract: The present invention relates to interfacial layers for use m membrane electrode assemblies that comprise nanowire-supported catalysts, and fuel cells comprising such membrane electrode assemblies. The present invention also relates to methods of preparing membrane electrode assemblies and fuel cells comprising interfacial layers and nanowire-supported catalysts.
    Type: Application
    Filed: October 22, 2009
    Publication date: November 10, 2011
    Applicant: Nanosys, Inc
    Inventors: Yimin Zhu, Jay L. Goldman, Baixin Qian, Ionel C. Stefan, Masashi Muraoka, Takenori Onishi, Kohtaroh Saitoh, Hirotaka Mizuhata
  • Publication number: 20110275011
    Abstract: The present invention relates to electrochemical catalyst particles, including nanoparticles, which can be used membrane electrode assemblies and in fuel cells. In exemplary embodiments, the present invention provides electrochemical catalysts supported by various materials. Suitably the catalysts have an atomic ratio of oxygen to a metal in the nanoparticle of about 3 to about 6.
    Type: Application
    Filed: October 22, 2009
    Publication date: November 10, 2011
    Applicants: Sharp Kabushiki Kaisha, Nanosys, Inc.
    Inventors: Yimin Zhu, Jay L. Goldman, Baixin Qian, Ionel C. Stefan, Mutsuko Komoda, Hirotaka Mizuhata, Takenori Onishi
  • Publication number: 20110008707
    Abstract: A catalyst layer for a fuel cell membrane electrode assembly includes a plurality of agglomerates, adjacent ones of the plurality of agglomerates contacting with each other with pores provided between said adjacent ones of the plurality of agglomerates, each of the plurality of agglomerates being formed by packing a plurality of catalysts each consisting of noble metal fine particles supported on a fiber-like support material, adjacent ones of the plurality of catalysts contacting with each other with pores provided between said adjacent ones of the plurality of catalysts, and each of the plurality of catalysts contacting with a plurality of catalysts other than said each catalyst at a plurality of contact points. This allows providing a catalyst layer, a fuel cell membrane electrode assembly, and a fuel cell, each of which has compact size and excellent power generation performance, and a method for producing the same.
    Type: Application
    Filed: May 3, 2010
    Publication date: January 13, 2011
    Applicants: NANOSYS, Inc., Sharp Kabushiki Kaisha
    Inventors: Masashi MURAOKA, Kohtaroh Saitoh, Hirotaka Mizuhata, Takenori Onishi, Yimin Zhu, Ionel C. Stefan, Baixin Qian, Jay L. Goldman
  • Patent number: RE45703
    Abstract: The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: September 29, 2015
    Assignee: OneD Material LLC
    Inventors: Yimin Zhu, Jay L. Goldman, Baixin Qian, Ionel C. Stefan
  • Patent number: RE46921
    Abstract: The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: June 26, 2018
    Assignee: OneD Material LLC
    Inventors: Yimin Zhu, Jay L. Goldman, Baixin Qian, Ionel C. Stefan
  • Patent number: RE48084
    Abstract: The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: July 7, 2020
    Assignee: ONED MATERIAL LLC
    Inventors: Yimin Zhu, Jay L. Goldman, Baixin Qian, Ionel C. Stefan