Patents by Inventor Baiyi Zhao

Baiyi Zhao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10947324
    Abstract: A flexible manufacturing system for selectively producing different alpha-olefins from ethylene includes: (a) a reaction section 18 with ethylene feed operative to oligomerize ethylene; (b) a catalyst feed system 12, 14, 16 comprising a plurality of independent homogeneous catalyst feeders connected with the reaction section for alternatively providing different selective homogeneous catalyst compositions to the reaction section; (c) an ethylene recycle column 22 coupled to the reaction section and adapted to receive crude product and unreacted ethylene therefrom, the recycle column being operative to separate ethylene and optionally lower oligomers from the crude product which are recycled to the ethylene feed to the reaction section, the ethylene recycle column being further operative to provide a crude product bottoms stream; (d) a catalyst removal section 20 coupled to the reaction section adapted to remove spent catalyst from the system; and (e) a first product separation column 24 connected to the recyc
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: March 16, 2021
    Assignee: TPC Group LLC
    Inventors: Michael O. Nutt, Baiyi Zhao
  • Publication number: 20200291140
    Abstract: A flexible manufacturing system for selectively producing different alpha-olefins from ethylene includes: (a) a reaction section 18 with ethylene feed operative to oligomerize ethylene; (b) a catalyst feed system 12, 14, 16 comprising a plurality of independent homogeneous catalyst feeders connected with the reaction section for alternatively providing different selective homogeneous catalyst compositions to the reaction section; (c) an ethylene recycle column 22 coupled to the reaction section and adapted to receive crude product and unreacted ethylene therefrom, the recycle column being operative to separate ethylene and optionally lower oligomers from the crude product which are recycled to the ethylene feed to the reaction section, the ethylene recycle column being further operative to provide a crude product bottoms stream; (d) a catalyst removal section 20 coupled to the reaction section adapted to remove spent catalyst from the system; and (e) a first product separation column 24 connected to the recyc
    Type: Application
    Filed: February 28, 2020
    Publication date: September 17, 2020
    Inventors: Michael O. Nutt, Baiyi Zhao
  • Patent number: 8563794
    Abstract: A method of extending the life of an aromatization catalyst comprising identifying a rapid deactivation threshold (RDT) of the catalyst, and oxidizing the catalyst prior to reaching the RDT. A method of aromatizing a hydrocarbon comprising identifying a rapid deactivation threshold (RDT) for an aromatization catalyst, and operating an aromatization reactor comprising the catalyst to extend the Time on Stream of the reactor prior to reaching the RDT. A method of extending the life of an aromatization catalyst comprising predicting a rapid deactivation threshold (RDT) for an aromatization reactor by employing the catalyst in a reactor system under an accelerated fouling condition to identify a test rapid deactivation threshold (t-RDT), predicting the RDT for the aromatization reactor based upon the t-RDT, and oxidizing the catalyst prior to the predicted RDT to extend the Time on Stream of the aromatization catalyst.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: October 22, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Scott H. Brown, Tin-Tack Peter Cheung, Daniel P. Hagewiesche, Baiyi Zhao
  • Patent number: 8461072
    Abstract: This invention relates to a series of novel late transition metal catalysts for olefin oligomerization, the catalysts demonstrating high activity and selectivity for linear ?-olefins. The catalysts contain a Group-8, -9, or -10 transition metal, M, excluding palladium; an ancillary ligand comprising: a terminal amine comprising two independently selected hydrocarbyl radicals, R1 and R2; a terminal phosphine comprising two independently selected hydrocarbyl radicals, R3 and R4; and a hydrocarbyl bridge, Y, comprising a backbone wherein the hydrocarbyl bridge connects between the terminal amine and the terminal phosphine and wherein the backbone comprises a chain that is four or more carbon atoms long; and an abstractable ligand, X. For example this invention relates to a composition of matter with the following formula: wherein M, R1, R2, R3, and R4, Y, and X are as defined above.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: June 11, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Baiyi Zhao, Smita Kacker, Jo Ann Marie Canich
  • Publication number: 20130066125
    Abstract: A method of extending the life of an aromatization catalyst comprising identifying a rapid deactivation threshold (RDT) of the catalyst, and oxidizing the catalyst prior to reaching the RDT. A method of aromatizing a hydrocarbon comprising identifying a rapid deactivation threshold (RDT) for an aromatization catalyst, and operating an aromatization reactor comprising the catalyst to extend the Time on Stream of the reactor prior to reaching the RDT. A method of extending the life of an aromatization catalyst comprising predicting a rapid deactivation threshold (RDT) for an aromatization reactor by employing the catalyst in a reactor system under an accelerated fouling condition to identify a test rapid deactivation threshold (t-RDT), predicting the RDT for the aromatization reactor based upon the t-RDT, and oxidizing the catalyst prior to the predicted RDT to extend the Time on Stream of the aromatization catalyst.
    Type: Application
    Filed: September 13, 2012
    Publication date: March 14, 2013
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Scott H. BROWN, Tin-Tack Peter CHEUNG, Daniel P. HAGEWIESCHE, Baiyi ZHAO
  • Patent number: 8288603
    Abstract: A method of extending the life of an aromatization catalyst comprising identifying a rapid deactivation threshold (RDT) of the catalyst, and oxidizing the catalyst prior to reaching the RDT. A method of aromatizing a hydrocarbon comprising identifying a rapid deactivation threshold (RDT) for an aromatization catalyst, and operating an aromatization reactor comprising the catalyst to extend the Time on Stream of the reactor prior to reaching the RDT. A method of characterizing an aromatization catalyst comprising identifying a rapid deactivation threshold (RDT) of the catalyst.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: October 16, 2012
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Scott H. Brown, Tin-Tack Peter Cheung, Daniel P. Hagewiesche, Baiyi Zhao
  • Patent number: 7994086
    Abstract: A series of novel late transition metal catalysts for olefin oligomerization have been invented. The catalysts demonstrate high activity and selectivity for linear ?-olefins.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: August 9, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Baiyi Zhao, Smita Kacker, Jo Ann Marie Canich
  • Publication number: 20110190558
    Abstract: A method of extending the life of an aromatization catalyst comprising identifying a rapid deactivation threshold (RDT) of the catalyst, and oxidizing the catalyst prior to reaching the RDT. A method of aromatizing a hydrocarbon comprising identifying a rapid deactivation threshold (RDT) for an aromatization catalyst, and operating an aromatization reactor comprising the catalyst to extend the Time on Stream of the reactor prior to reaching the RDT. A method of characterizing an aromatization catalyst comprising identifying a rapid deactivation threshold (RDT) of the catalyst.
    Type: Application
    Filed: December 7, 2010
    Publication date: August 4, 2011
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Scott H. BROWN, Tin-Tack Peter CHEUNG, Daniel P. HAGEWIESCHE, Baiyi ZHAO
  • Publication number: 20110092658
    Abstract: A series of novel late transition metal catalysts for olefin oligomerization have been invented. The catalysts demonstrate high activity and selectivity for linear ?-olefins.
    Type: Application
    Filed: November 29, 2010
    Publication date: April 21, 2011
    Inventors: Baiyi Zhao, Smita Kacker, Jo Ann Marie Canich
  • Patent number: 7871953
    Abstract: As series of novel late transition metal catalysts for olefin oligomerization have been invented. The catalyst system includes a Group 8, 9 or 10 transition metal and an activator. The catalysts demonstrate high activity and selectivity for linear ?-olefins. Preferably this invention relates to a catalyst system comprising the reaction product of: (a) an activator selected from the group consisting of alumoxane, aluminum alkyl, alkyl aluminum halide, alkylaluminum alkoxide, discrete ionic activator, and Lewis acid; and (b) a catalyst precursor wherein the catalyst precursor has the following formula: wherein (i) M is a Group-8, -9 , or -10 transition metal; (ii) N is nitrogen (iii) P is phosphorus; (iv) R1, R2, R3, and R4 are independently hydrocarbyl radicals; (v) Y is a hydrocarbyl bridge comprising a backbone wherein the backbone comprises a chain that is four or more carbon atoms long; (vi) X are independently abstractable ligands.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: January 18, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Baiyi Zhao, Smita Kacker, Jo Ann Marie Canich
  • Patent number: 7868217
    Abstract: A method of extending the life of an aromatization catalyst comprising identifying a rapid deactivation threshold (RDT) of the catalyst, and oxidizing the catalyst prior to reaching the RDT. A method of aromatizing a hydrocarbon comprising identifying a rapid deactivation threshold (RDT) for an aromatization catalyst, and operating an aromatization reactor comprising the catalyst to extend the Time on Stream of the reactor prior to reaching the RDT. A method of characterizing an aromatization catalyst comprising identifying a rapid deactivation threshold (RDT) of the catalyst.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: January 11, 2011
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Scott H. Brown, Tin-Tack Peter Cheung, Daniel P. Hagewiesche, Baiyi Zhao
  • Publication number: 20090124840
    Abstract: A method of extending the life of an aromatization catalyst comprising identifying a rapid deactivation threshold (RDT) of the catalyst, and oxidizing the catalyst prior to reaching the RDT. A method of aromatizing a hydrocarbon comprising identifying a rapid deactivation threshold (RDT) for an aromatization catalyst, and operating an aromatization reactor comprising the catalyst to extend the Time on Stream of the reactor prior to reaching the RDT. A method of characterizing an aromatization catalyst comprising identifying a rapid deactivation threshold (RDT) of the catalyst.
    Type: Application
    Filed: November 14, 2007
    Publication date: May 14, 2009
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Scott H. Brown, Tin-Tack Peter Cheung, Daniel P. Hagewiesche, Baiyi Zhao
  • Patent number: 7429548
    Abstract: A This invention relates to a composition comprising a catecholate ligand, palladium or nickel, and an ancillary ligand with the following structure: where Pn is a Group-15 element; H is hydrogen; R7 and R8 are independently hydrogen or C1-C30 hydrocarbyl radicals, or both are C1-C30 hydrocarbyl radicals that form a ring structure comprising one or more aromatic or non-aromatic rings; and R13-R18 are, independently, hydrogen or C1-C30 hydrocarbyl radicals. The composition can be used to oligomerize ethylene.
    Type: Grant
    Filed: August 16, 2005
    Date of Patent: September 30, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Baiyi Zhao, Enock Berluche, Smita Kacker, Jo Ann Marie Canich
  • Patent number: 7247687
    Abstract: This invention relates to a transition metal compound represented by the formula LMX wherein M is a Group 3 to 11 metal L is a bulky bidentate or tridentate neutral ligand that is bonded to M by two or three heteroatoms and at least one heteroatom is nitrogen; X is a substituted or unsubstituted catecholate ligand provided that the substituted catecholate ligand does not contain a 1,2-diketone functionality.
    Type: Grant
    Filed: July 17, 2003
    Date of Patent: July 24, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Vladimir Kuzunich Cherkasov, Michael Paviovich Bubnov, Nikolay Olegovich Druzhkov, Valentina Nikolavena Glushakova, Irina Alexandrovna Teplova, Nina Aleksandrovna Skorodumova, Gleb Arsent′evich Abakumov, Cynthia A. Ballinger, Kevin R. Squire, Jo Ann Marie Canich, Enock Berluche, Lisa Saunders Baugh, Donald Norman Schulz, Baiyi Zhao
  • Patent number: 7160834
    Abstract: This invention relates to late transition metal catalyst precursors and catalysts for olefin dimerizations and oligomerizations, and to methods for making and using these catalysts.
    Type: Grant
    Filed: March 18, 2003
    Date of Patent: January 9, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Baiyi Zhao, Kevin R. Squire, Smita Kacker, Jo Ann Marie Canich
  • Patent number: 7161018
    Abstract: A series of soluble ?-diimine late transition metal catalysts has been invented. The catalysts demonstrate high activity and selectivity for linear ?-olefins. As such, these catalysts conveniently oligomerize ethylene. Typical activators as known to those of ordinary skill in the art are used to activate these transition metal catalyst. These catalysts can be used in a supported or unsupported form.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: January 9, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Baiyi Zhao, Enock Berluche, Smita Kacker, Jo Ann Marie Canich
  • Patent number: 7067450
    Abstract: A series of soluble ?-diimine late transition metal catalysts has been invented comprising a substituted or unsubstituted catecholate ligand. The catalysts demonstrate high activity and selectivity for linear ?-olefins. As such, these catalysts conveniently oligomerize ethylene. Typical activators as known to those of ordinary skill in the art are used to activate these transition metal catalysts. These catalysts can be used in a supported or unsupported form.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: June 27, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Baiyi Zhao, Enock Berluche, Smita Kacker, Jo Ann Marie Canich
  • Publication number: 20060047094
    Abstract: This invention relates to a transition metal compound represented by the formula LMX wherein M is a Group 3 to 11 metal L is a bulky bidentate or tridentate neutral ligand that is bonded to M by two or three heteroatoms and at least one heteroatom is nitrogen; X is a substituted or unsubstituted catecholate ligand provided that the substituted catecholate ligand does not contain a 1,2-diketone functionality.
    Type: Application
    Filed: July 17, 2003
    Publication date: March 2, 2006
    Inventors: Vladimir Cherkasov, Michael Bubnov, Nikolay Druzhkov, Valentina Glushakova, Irina Teplova, Nina Skorodumova, Gleb Abakumov, Cynthia Ballinger, Kevin Squire, Jo Ann Canich, Enock Berluche, Lisa Baugh, Donald Schulz, Baiyi Zhao
  • Publication number: 20060036049
    Abstract: A series of soluble ?-diimine late transition metal catalysts has been invented comprising a substituted or unsubstituted catecholate ligand. The catalysts demonstrate high activity and selectivity for linear ?-olefins. As such, these catalysts conveniently oligomerize ethylene. Typical activators as known to those of ordinary skill in the art are used to activate these transition metal catalysts. These catalysts can be used in a supported or unsupported form.
    Type: Application
    Filed: August 16, 2005
    Publication date: February 16, 2006
    Inventors: Baiyi Zhao, Enock Berluche, Smita Kacker, Jo Ann Canich
  • Publication number: 20050003955
    Abstract: A series of novel late transition metal catalysts for olefin oligomerization have been invented. The catalysts demonstrate high activity and selectivity for linear ?-olefins.
    Type: Application
    Filed: October 24, 2003
    Publication date: January 6, 2005
    Inventors: Baiyi Zhao, Smita Kacker, Jo Ann Canich