Patents by Inventor Bal K. Kaul

Bal K. Kaul has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7683233
    Abstract: In a process for producing a para-xylene enriched product from a gaseous mixture comprising at least para-xylene, meta-xylene and ortho-xylene, the gaseous mixture is contacted with an adsorbent capable of selectively adsorbing para-xylene and comprising a crystalline molecular sieve having an average crystal size between about 0.5 micron and about 20 microns. The contacting is conducted at a temperature and pressure such that at least part of the para-xylene in the mixture is adsorbed by the adsorbent to produce a para-xylene-depleted effluent stream. The para-xylene is then desorbed from said adsorbent and collected to form a para-xylene enriched stream. The adsorption and desorption steps are repeated for a plurality of cycles, such that the time between successive contacting steps is no more than 10 seconds.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: March 23, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John Di-Yi Ou, Sebastian C. Reyes, Bal K. Kaul, Wenyih Frank Lai, Brenda A. Raich, Charanjit S. Paur
  • Patent number: 7597798
    Abstract: A process for removing relatively low levels of high molecular weight organic sulfur from hydrocarbon streams, particularly from streams that have picked-up such sulfur while being transported through a pipeline. The hydrocarbon stream containing the organic sulfur is passed through a bed of adsorbent material comprised of a high Ni content, high surface area material that also contains an effective amount of SiO2 or GeO2 and an alkaline earth metal.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: October 6, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Joseph L. Feimer, Bal K. Kaul, Lawrence J. Lawlor, Jeenok T. Kim, G. Bryce McGarvey
  • Patent number: 7591879
    Abstract: The present invention is a method for operating a rapid cycling pressure swing adsorption (RCPSA) having a cycle time, T, to separate a feed gas into a non-adsorbed gas and tail gas. The method includes the steps of passing the feed gas having a purity of F % at high pressure into a first end of a bed which selectively adsorbs the tail gas and passes the product gas out a second end of the bed for a time, F. The product gas has a purity, P %, and a rate of recovery of R %. Then the bed is cocurrently depressurized for a time, tCO, followed by countercurrently depressurizing the bed for a time, tCN. The bed is then purged for a time, tP, wherein desorbate (tail gas) is released at the first end of the bed at a pressure greater than 30 psig, Subsequently the bed is repressurized for a duration, tRP. R>80%, P/F?1.1 or R?90%, 0<P/F <1.1.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: September 22, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Narasimhan Sundaram, Bal K. Kaul, Edward W. Corcoran, Craig Y. Sabottke, Richard L. Eckes
  • Publication number: 20090134094
    Abstract: A method for the removal of entrained hydrocarbons, particularly aromatics, from water by extracting the hydrocarbons in the water with a hydrocarbon which is relatively less soluble in the water than the entrained hydrocarbon. The hydrocarbons are then separated from the water by a process of coalescence/separation. The extractant is suitably a paraffinic hydrocarbon which, while having an affinity for the entrained hydrocarbon, is relatively less soluble in water than hydrocarbons such as aromatics. The hydrocarbons removed from the water can be recirculated to the feed with the composition of the recirculating phase being controlled to achieve the desired level of hydrocarbon removal.
    Type: Application
    Filed: October 24, 2008
    Publication date: May 28, 2009
    Applicant: ExxonMobil Research and Engineering Company Law Department
    Inventors: Robert J. Falkiner, Bal K. Kaul
  • Publication number: 20090133577
    Abstract: A method of drying liquid and gaseous hydrocarbons by contacting a feed stream of the hydrocarbon with an aqueous solution of a salt drying agent prior to passing the stream through a salt dryer to remove part of the water in the stream. The aqueous solution of the salt drying agent is generated in the salt dryer when the partly dried stream comes into contact with the drying salt and forms the solution. The solution is circulated in a loop from the salt dryer to the incoming feed and then through a liquid/liquid coalescer which removes a portion of the water together with dissolved salt from the mixture before the mixture is passed on to the salt dryer where further removal of water occurs. The salt dryer is off-loaded by a substantial factor by the initial partial dehydration and does not require to remove such a large amount of water; the salt consumption is therefore reduced in proportion to the amount of water removed in the treatment steps which precede the dryer.
    Type: Application
    Filed: October 24, 2008
    Publication date: May 28, 2009
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Robert J. Falkiner, Bal K. Kaul
  • Publication number: 20090134068
    Abstract: A method for the removal of dissolved water or water and ice from hydrocarbon liquids such as petroleum refinery fuels or natural gas liquids in a manner which enables the fuels to be readily treated by the coalescence/separation technique while reducing the potential for plugging filters and other equipment with ice crystals. Free water or water/ice is removed from the liquid hydrocarbons by contacting the hydrocarbon feed with a treating agent which as an affinity for water prior to subjecting the mixture to coalescence/separation. The treating agent is preferably a co-solvent for the water and the hydrocarbon such as an alcohol e.g. methanol. The treating agent and water are separated from the hydrocarbon component during the coalescence/separation and recirculated to the feed with the composition of the recycle aqueous phase being controlled to achieve the desired level of water removal to meet relevant product specifications.
    Type: Application
    Filed: October 24, 2008
    Publication date: May 28, 2009
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Robert J. Falkiner, Bal K. Kaul, Ian D. Campbell
  • Publication number: 20090120839
    Abstract: Improved hydroprocessing processes for upgrading refinery streams via the use of rapid cycle pressure swing absorption having a cycle time of less than 30 s for increasing the concentration of hydrogen in the vapor phase product recycled to the hydroprocessing zone.
    Type: Application
    Filed: January 23, 2006
    Publication date: May 14, 2009
    Inventors: Craig Y. Sabottke, Edward W. Corcoran, Richard L. Eckes, Bal K. Kaul, Narasimhan Sundaram, James J. Schorfheide, Sean C. Smyth, David L. Stern
  • Publication number: 20090071332
    Abstract: The use of rapid cycle pressure swing adsorption having a cycle time of less than 30 s for increasing the hydrogen concentration in hydrogen-containing steams, from a hydrogen source, such as a stream reforming unit.
    Type: Application
    Filed: January 23, 2006
    Publication date: March 19, 2009
    Inventors: Bal K. Kaul, John W. Viets, Mohsen N. Harandi, Julian A. Wolfenbarger, John Di-Yi Ou, David Stern
  • Publication number: 20090007782
    Abstract: The management of hydrogen in hydrogen-containing streams associated with petrochemical process units wherein the hydrogen-containing stream is subjected rapid cycle pressure swing adsorption to increase the concentration of hydrogen therein.
    Type: Application
    Filed: January 23, 2006
    Publication date: January 8, 2009
    Inventors: David L. Stern, Bal K. Kaul, John Di-Yi Ou, Dana L. Pilliod
  • Publication number: 20080283470
    Abstract: A method for removing ionic, organic and elemental mercury from aqueous streams such as wastewater streams from hydrocarbon processing. The method comprises four primary removal steps. First, a mercury precipitant is added to the stream to convert dissolved ionic species of mercury water-insoluble form. The majority of these precipitated solids, as well as other forms of particulate mercury, are subsequently removed by means of gas flotation. Following the flotation step, additional particulate and precipitated ionic mercury removal is accomplished with media filtration and finally, activated carbon acts to remove the remaining dissolved ionic mercury species as well as elemental and organic forms of mercury.
    Type: Application
    Filed: May 16, 2007
    Publication date: November 20, 2008
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Meredith B. Gustafsson, Bal K. Kaul, Brian S. Fox, David A. Masciola, Bowornsak Wanichkul
  • Publication number: 20080277317
    Abstract: An improved hydrotreating process for removing sulfur from distillate boiling range feedstreams. This improved process utilizes a two stage hydrotreating process scheme, each stage associated with an acid gas removal zone wherein one of the stages utilizes a rapid cycle pressure swing adsorption zone to increase the concentration of hydrogen in the process.
    Type: Application
    Filed: January 23, 2006
    Publication date: November 13, 2008
    Inventors: Benoit Touffait, Herve Innocenti, Jamil Zaari, Bal K. Kaul, Narasimhan Sundaram
  • Publication number: 20080071126
    Abstract: In a process for producing a para-xylene enriched product from a gaseous mixture comprising at least para-xylene, meta-xylene and ortho-xylene, the gaseous mixture is contacted with an adsorbent capable of selectively adsorbing para-xylene and comprising a crystalline molecular sieve having an average crystal size between about 0.5 micron and about 20 microns. The contacting is conducted at a temperature and pressure such that at least part of the para-xylene in the mixture is adsorbed by the adsorbent to produce a para-xylene-depleted effluent stream. The para-xylene is then desorbed from said adsorbent and collected to form a para-xylene enriched stream. The adsorption and desorption steps are repeated for a plurality of cycles, such that the time between successive contacting steps is no more than 10 seconds.
    Type: Application
    Filed: August 20, 2007
    Publication date: March 20, 2008
    Inventors: John Di-Yi Ou, Sebastian C. Reyes, Bal K. Kaul, Wenyih Frank Lai, Brenda A. Raich, Charanjit S. Paur
  • Publication number: 20080035572
    Abstract: This invention relates to the fabrication of a polymeric membrane and a process for utilizing the polymeric membrane for separating components of a feedstream. More particularly, but not by way of limitation, this invention relates to the fabrication of a polymeric membrane and a process for utilizing the polymeric membrane in the separation of aromatics from a hydrocarbon based feedstream. The membranes of the present invention possess low soft segment glass transition temperatures and improved separation characteristics.
    Type: Application
    Filed: August 3, 2007
    Publication date: February 14, 2008
    Inventors: Craig Y. Sabottke, Bal K. Kaul, Dennis G. Peiffer
  • Publication number: 20080035574
    Abstract: This invention relates to a polymeric membrane assembly which incorporates one or more layers of protective barrier films or protective barrier membrane layers to protect the susceptible polymer membrane from deterioration due to contact with water, oxygen or a combination of both. This invention also relates to a process for utilizing these polymeric membrane assemblies in separation processes involving hydrocarbon feedstreams. More particularly, but not by way of limitation, this invention relates to the use of these polymeric membrane assemblies in processes involving the separation of aromatics from a hydrocarbon based feedstream.
    Type: Application
    Filed: August 3, 2007
    Publication date: February 14, 2008
    Inventors: Craig Y. Sabottke, Bal K. Kaul, Dennis G. Peiffer
  • Publication number: 20080035566
    Abstract: This invention relates to a polymer membrane assembly for selective separation of permeate compositions by carbon weight. This invention also relates to a process for utilizing these polymer membrane assemblies in separation processes for selective carbon weight separation of hydrocarbon feedstreams components. More particularly, but not by way of limitation, this invention relates to the use membrane assemblies for the selective separation by carbon weight of aromatics from a hydrocarbon based feedstream.
    Type: Application
    Filed: August 3, 2007
    Publication date: February 14, 2008
    Inventors: Craig Y. Sabottke, Bal K. Kaul, Dennis G. Peiffer
  • Publication number: 20080035571
    Abstract: This invention relates to the composition of an integrally-layered polymeric membrane and a process for utilizing the integrally-layered polymeric membrane components of a feedstream. More particularly, but not by way of limitation, this invention relates to the composition of an integrally-layered polymeric membrane and a process for utilizing the integrally-layered polymeric membrane in the separation of aromatics from a hydrocarbon based feedstream. The polymeric membranes of the present invention are fabricated by chemically crosslinking adjacent polymer membrane layers of the same or differing copolymer solutions to produce an integrally-layered polymeric membrane with improved separations properties.
    Type: Application
    Filed: August 3, 2007
    Publication date: February 14, 2008
    Inventors: Craig Y. Sabottke, Bal K. Kaul, Dennis G. Peiffer
  • Publication number: 20080011680
    Abstract: The present invention pertains to a process for the separation of aromatics from a feed stream, including aromatics and non-aromatics by selectively permeating the aromatics through a membrane comprising feeding a mixed phase vapor-liquid feed to a membrane wherein said liquid phase preferentially wets the surface of the membrane.
    Type: Application
    Filed: July 10, 2007
    Publication date: January 17, 2008
    Inventors: Randall D. Partridge, Walter Weissman, Bal K. Kaul, Craig Y. Sabottke, Sanjay K. Bhatia
  • Patent number: 7303681
    Abstract: A method for separating aromatic hydrocarbons from a feed stream. The method includes flowing the feed stream through a first channel within a first wafer assembly that may contain an underflow distribution weir. Next, the feed stream is exposed to a first thin film polymer membrane. A stream permeates through the first thin film polymer membrane, and the permeate is produced from the first wafer assembly. The retentate is directed via a redistribution channel (such as a tube) to a second wafer assembly that may contain an underflow distribution weir. This retentate is exposed to a second thin film polymer membrane. A second permeate stream is created that permeates through the second thin film polymer membrane. The second permeate stream is conducted into the permeate zone and ultimately produced from the second wafer assembly. An apparatus for separating aromatic components from a feed stream is also disclosed. In the preferred embodiment, the apparatus includes a series of tandem wafer assemblies.
    Type: Grant
    Filed: September 21, 2004
    Date of Patent: December 4, 2007
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Craig Y. Sabottke, Bal K. Kaul
  • Patent number: 7074324
    Abstract: A process for removing sulfur compounds from hydrocarbon streams by contacting the hydrocarbon stream, especially a gasoline stream, with an adsorbent material. The adsorbent material is regenerated with hydrogen or a hydrogen/H2S mixture.
    Type: Grant
    Filed: April 25, 2003
    Date of Patent: July 11, 2006
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Joseph L. Feimer, Bal K. Kaul, Lawrence J. Lawlor
  • Publication number: 20030226786
    Abstract: A process for removing sulfur compounds from hydrocarbon streams by contacting the hydrocarbon stream, especially a gasoline stream, with an adsorbent material. The adsorbent material is regenerated with hydrogen or a hydrogen/H2S mixture.
    Type: Application
    Filed: April 25, 2003
    Publication date: December 11, 2003
    Inventors: Joseph L. Feimer, Bal K. Kaul, Lawrence J. Lawlor