Patents by Inventor Balamurali Krishna R. Nair

Balamurali Krishna R. Nair has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9415378
    Abstract: A dehydrogenation catalyst is formed by forming a mixture comprising a bayerite aluminum hydroxide (Al(OH)3), a lanthanum (La) source, a cerium (Ce) source, a barium (Ba) source, a zirconium (Zr) source, and water into a shaped body. The shaped body is calcined at a temperature of at least 750° C. to form a catalyst support. The catalyst support is treated with a dehydrogenation catalyst component to form a treated catalyst support containing the dehydrogenation catalyst component. The treated catalyst support is then calcined. The resulting catalyst composition may be used by contacting a paraffin hydrocarbon feed with a catalyst within a reactor in the presence of steam under dehydrogenation reaction conditions suitable to form dehydrogenated hydrocarbon products.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: August 16, 2016
    Assignee: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: James W. Kauffman, Patricia A. Hooks, Balamurali Krishna R. Nair, Xiankuan Zhang
  • Patent number: 9364815
    Abstract: A method of forming a dehydrogenation catalyst support is carried out by forming a mixture comprising a bayerite aluminum hydroxide (Al(OH)3) and water into a support material. The support material is particulized. The particulized support material is compressed to a pressure of at least 5,000 psig to form a shaped body. The shaped body is calcined in pure steam at a temperature of at least 750° C. for at least 0.25 hours to form a catalyst support having an average pore diameter of 200 ? or greater. The catalyst support can then be treated with a dehydrogenation catalyst component so that the catalyst support contains the dehydrogenation catalyst component to form a dehydrogenation catalyst that can then be used by contacting a hydrocarbon feed with the catalyst within a reactor in the presence of steam under dehydrogenation reaction conditions suitable to form dehydrogenated hydrocarbon products.
    Type: Grant
    Filed: November 7, 2013
    Date of Patent: June 14, 2016
    Assignee: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: James W. Kauffman, Patricia A. Hooks, Balamurali Krishna R. Nair
  • Publication number: 20150151283
    Abstract: A dehydrogenation catalyst is formed by forming a mixture comprising a bayerite aluminum hydroxide (Al(OH)3), a lanthanum (La) source, a cerium (Ce) source, a barium (Ba) source, a zirconium (Zr) source, and water into a shaped body. The shaped body is calcined at a temperature of at least 750° C. to form a catalyst support. The catalyst support is treated with a dehydrogenation catalyst component to form a treated catalyst support containing the dehydrogenation catalyst component. The treated catalyst support is then calcined. The resulting catalyst composition may be used by contacting a paraffin hydrocarbon feed with a catalyst within a reactor in the presence of steam under dehydrogenation reaction conditions suitable to form dehydrogenated hydrocarbon products.
    Type: Application
    Filed: December 2, 2013
    Publication date: June 4, 2015
    Applicant: Saudi Basic Industries Corporation
    Inventors: James W. Kauffman, Patricia A. Hooks, Balamurali Krishna R. Nair
  • Publication number: 20150126792
    Abstract: A method of forming a dehydrogenation catalyst support is carried out by forming a mixture comprising a bayerite aluminum hydroxide (Al(OH)3) and water into a support material. The support material is particulized. The particulized support material is compressed to a pressure of at least 5,000 psig to form a shaped body. The shaped body is calcined in pure steam at a temperature of at least 750° C. for at least 0.25 hours to form a catalyst support having an average pore diameter of 200 ? or greater. The catalyst support can then be treated with a dehydrogenation catalyst component so that the catalyst support contains the dehydrogenation catalyst component to form a dehydrogenation catalyst that can then be used by contacting a hydrocarbon feed with the catalyst within a reactor in the presence of steam under dehydrogenation reaction conditions suitable to form dehydrogenated hydrocarbon products.
    Type: Application
    Filed: November 7, 2013
    Publication date: May 7, 2015
    Inventors: James W. Kauffman, Patricia A. Hooks, Balamurali Krishna R. Nair
  • Publication number: 20140200384
    Abstract: A catalyst composition useful for the dehydrogenation of hydrocarbon comprises components (A)-(G). Component (A) is a catalyst substrate. (B) is platinum. (C) is at least one of germanium, tin, lead, gallium, indium, and titanium. (D) is phosphorus, the total amount of component (D) being at a level of from 1 wt. % to 3 wt. %. (E) is at least one of magnesium, calcium, strontium, barium, radium, and a lanthanide, the total amount of component (E) being at a level of from 0.1 wt. % to 5 wt. %. (F) is chloride at a level of 0.1 wt. % to 2 wt. %. Component (G) is manganese. The catalyst may be used in the conversion of hydrocarbons wherein a hydrocarbon feed is contacted with the catalyst within a reactor under hydrocarbon conversion reaction conditions to form hydrocarbon conversion products. Sources of the various components are combined in a method to form the catalyst composition.
    Type: Application
    Filed: January 16, 2013
    Publication date: July 17, 2014
    Inventors: James W. Kauffman, Patricia A. Hooks, Balamurali Krishna R. Nair
  • Patent number: 7700184
    Abstract: Novel catalytic membranes and methods of synthesizing the membranes are disclosed herein. The technology involves the synthesis of a new type of permselective membrane that combines a hollow porous support with strategically positioned catalytic and selective transport functions to overcome thermodynamic, kinetic, and thermal obstacles, such as in the production of hydrogen. Sub-micron, dense metallic catalysts and films may be deposited within porous hollow substrates to create the membranes using the techniques of sol slip casting, film coating and electroless plating.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: April 20, 2010
    Assignee: University of Houston System
    Inventors: Michael P. Harold, Balamurali Krishna R. Nair
  • Publication number: 20080176060
    Abstract: Novel catalytic membranes and methods of synthesizing the membranes are disclosed herein. The technology involves the synthesis of a new type of permselective membrane that combines a hollow porous support with strategically positioned catalytic and selective transport functions to overcome thermodynamic, kinetic, and thermal obstacles, such as in the production of hydrogen. Sub-micron, dense metallic catalysts and films may be deposited within porous hollow substrates to create the membranes using the techniques of sol slip casting, film coating and electroless plating.
    Type: Application
    Filed: August 14, 2007
    Publication date: July 24, 2008
    Applicant: UNIVERSITY OF HOUSTON SYSTEM
    Inventors: Michael P. Harold, Balamurali Krishna R. Nair