Patents by Inventor Balasubramanian Sivakumar

Balasubramanian Sivakumar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11294413
    Abstract: An apparatus for generating a substantially constant DC reference voltage. The apparatus includes a reference voltage generator configured to generate a substantially constant direct current (DC) reference voltage based on a voltage on a data signal transmission line, wherein the voltage is based on a bandgap reference voltage. In one implementation, the data signal transmission line is a differential signal transmission line and the voltage is a common mode voltage. In another implementation, the data signal transmission line is an I-data signal transmission line and a Q-data signal transmission line, and the voltage is an average or weighted-average of the common mode voltages of the I- and Q-differential signals. In another implementation, the reference voltage is based on a single-ended (e.g., positive- and/or negative)-component or vice-versa of I- and Q-data signals, respectively.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: April 5, 2022
    Assignee: QUALCOMM INCORPORATED
    Inventors: Balasubramanian Sivakumar, Dinesh Jagannath Alladi, Kentaro Yamamoto, Sean Baker, Liang Zhao
  • Publication number: 20200333819
    Abstract: An apparatus for generating a substantially constant DC reference voltage. The apparatus includes a reference voltage generator configured to generate a substantially constant direct current (DC) reference voltage based on a voltage on a data signal transmission line, wherein the voltage is based on a bandgap reference voltage. In one implementation, the data signal transmission line is a differential signal transmission line and the voltage is a common mode voltage. In another implementation, the data signal transmission line is an I-data signal transmission line and a Q-data signal transmission line, and the voltage is an average or weighted-average of the common mode voltages of the I- and Q-differential signals. In another implementation, the reference voltage is based on a single-ended (e.g., positive- and/or negative)-component or vice-versa of I- and Q-data signals, respectively.
    Type: Application
    Filed: March 31, 2020
    Publication date: October 22, 2020
    Inventors: Balasubramanian SIVAKUMAR, Dinesh Jagannath ALLADI, Kentaro YAMAMOTO, Sean BAKER, Liang ZHAO
  • Patent number: 10642302
    Abstract: An apparatus for generating a substantially constant DC reference voltage. The apparatus includes a reference voltage generator configured to generate a substantially constant direct current (DC) reference voltage based on a voltage on a data signal transmission line, wherein the voltage is based on a bandgap reference voltage. In one implementation, the data signal transmission line is a differential signal transmission line and the voltage is a common mode voltage. In another implementation, the data signal transmission line is an I-data signal transmission line and a Q-data signal transmission line, and the voltage is an average or weighted-average of the common mode voltages of the I- and Q-differential signals. In another implementation, the reference voltage is based on a single-ended (e.g., positive- and/or negative)-component or vice-versa of I- and Q-data signals, respectively.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: May 5, 2020
    Assignee: QUALCOMM Incorporated
    Inventors: Balasubramanian Sivakumar, Dinesh Jagannath Alladi, Kentaro Yamamoto, Sean Baker, Liang Zhao
  • Patent number: 10439627
    Abstract: An example apparatus is disclosed for alias rejection through charge sharing. The apparatus includes a filter-sampling network, a digital-to-analog converter, and a charge-sharing switch. The filter-sampling network includes a capacitor and a first switch, which is coupled between an input node and the capacitor. The filter-sampling network is configured to connect or disconnect the capacitor to or from the input node via the first switch. The digital-to-analog converter includes a capacitor array and a second switch, which is coupled between the input node and the capacitor array. The capacitor array is coupled between the second switch and a charge-sharing node. The digital-to-analog converter is configured to connect or disconnect the capacitor array to or from the input node via the second switch. The charge-sharing switch is coupled between the charge-sharing node and the capacitor and is configured to connect or disconnect the capacitor to or from the digital-to-analog converter.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: October 8, 2019
    Assignee: QUALCOMM Incorporated
    Inventors: Sean Baker, Dinesh Jagannath Alladi, Balasubramanian Sivakumar, Kentaro Yamamoto
  • Publication number: 20190190529
    Abstract: An example apparatus is disclosed for alias rejection through charge sharing. The apparatus includes a filter-sampling network, a digital-to-analog converter, and a charge-sharing switch. The filter-sampling network includes a capacitor and a first switch, which is coupled between an input node and the capacitor. The filter-sampling network is configured to connect or disconnect the capacitor to or from the input node via the first switch. The digital-to-analog converter includes a capacitor array and a second switch, which is coupled between the input node and the capacitor array. The capacitor array is coupled between the second switch and a charge-sharing node. The digital-to-analog converter is configured to connect or disconnect the capacitor array to or from the input node via the second switch. The charge-sharing switch is coupled between the charge-sharing node and the capacitor and is configured to connect or disconnect the capacitor to or from the digital-to-analog converter.
    Type: Application
    Filed: June 15, 2018
    Publication date: June 20, 2019
    Inventors: Sean Baker, Dinesh Jagannath Alladi, Balasubramanian Sivakumar, Kentaro Yamamoto
  • Patent number: 10312927
    Abstract: Certain aspects of the present disclosure provide methods and apparatus for calibrating time-interleaved analog-to-digital converter (ADC) circuits and generating a suitable signal for such calibration. Certain aspects provide a signal generator for calibrating a time-interleaved ADC circuit having a plurality of channels. The signal generator generally includes a pattern generator configured to receive a periodic signal and to output a bitstream based on the periodic signal and a conversion circuit having an input coupled to an output of the pattern generator and configured to generate a waveform based on the bitstream. The bitstream has a bit pattern with a total number of bits that shares no common factor with a number of the channels and includes a relatively lower frequency component combined with a relatively higher frequency component.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: June 4, 2019
    Assignee: QUALCOMM Incorporated
    Inventors: Seyed Arash Mirhaj, Elias Dagher, Yongjian Tang, Dinesh Alladi, Masoud Ensafdaran, Lei Sun, Anand Meruva, Yuhua Guo, Balasubramanian Sivakumar
  • Patent number: 9300316
    Abstract: In one embodiment, a circuit includes a first input of a comparator for an analog to digital converter (ADC). The first input is coupled to a first capacitive network. The circuit further includes a second input of the comparator for the ADC. The second input is coupled to a second capacitive network. The first capacitive network includes a first set of capacitors where a first plate of the first set of capacitors is selectively coupled to an input signal. The second capacitive network includes a second set of capacitors where a second plate of the first set of capacitors is selectively coupled to the input signal. The first plate and the second plate are opposite plates of the first set of capacitors and the second set of capacitors.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: March 29, 2016
    Assignee: QUALCOMM Incorporated
    Inventors: Dinesh Jagannath Alladi, Sean Baker, Balasubramanian Sivakumar, Wei Huang, Dan Yuan
  • Publication number: 20150249463
    Abstract: In one embodiment, a circuit includes a first input of a comparator for an analog to digital converter (ADC). The first input is coupled to a first capacitive network. The circuit further includes a second input of the comparator for the ADC. The second input is coupled to a second capacitive network. The first capacitive network includes a first set of capacitors where a first plate of the first set of capacitors is selectively coupled to an input signal. The second capacitive network includes a second set of capacitors where a second plate of the first set of capacitors is selectively coupled to the input signal. The first plate and the second plate are opposite plates of the first set of capacitors and the second set of capacitors.
    Type: Application
    Filed: February 6, 2015
    Publication date: September 3, 2015
    Inventors: Dinesh Jagannath Alladi, Sean Baker, Balasubramanian Sivakumar, Wei Huang, Dan Yuan